

Technical Information

- 1. Types and Features of Bearings
- 2. Selection of Bearings
- 3. Load Capacity and Life of Bearings
- 4. Boundary Dimensions and Nomenclature
- 5. Accuracy of Bearings
- 6. Internal Clearance of Bearings
- 7. Matearials of Bearings
- 8. Application of Bearings
- 9. Trouble-shooting Bearing Problem

1. Types and Features of Bearings

- 1.1 Classification and Types
- 1.2 Designs and Feature
 - 1.2.1 Deep Groove Ball Bearings
 - 1.2.2 Single-row Angular Contact Ball Bearings
 - 1.2.3 Double-row Angular Contact Ball Bearings
 - 1.2.4 Self-aligning Ball Bearings
 - 1.2.5 Cylindrical Roller Bearings
 - 1.2.6 Tapered Roller Bearings
 - 1.2.7 Spherical Roller Bearings
 - 1.2.8 Thrust Ball Bearings
 - 1.2.9 Spherical Roller Thrust Bearings

1. Types and Features of bearings

1.1 Classification and Types of Rolling Contact Bearings

In general, rolling contact bearings may be classified as radial or thrust bearings according to bearing design or they may be classified as ball or roller bearings according to the type of rolling element.

Radial bearings are mainly designed for supporting a load perpendicular to a shaft axis, whereas thrust bearings accept loads parallel to the shaft axis.

Using the BALL and ROLLER classification ROLLER bearings may be further divided according to the shape of the roller into the subclasses; Cylindrical roller, Tapered roller, Spherical roller, or Needle roller bearings. BALL bearings can be further divided according to the number of rows into either single-row or double-row (for Thrust Ball bearings, single-direction and double-direction.) BALL Bearing may be still further sub-divided into smaller segments according to the relationship between the bearing rings and rolling elements; the shape of bearing rings; and use of accessories.

Bearings are also classified by specific application, such as Clutch-release ball bearings for automotive applications.

Table 1.1 indicates the principal types of radial and thrust bearings and a summary of their design. Table 1.2 summarizes the designs and features of rolling contact bearings.

Table 1.1 Classification and Types of Rolling Contact Bearings

Table 1.2 Types and Features of Rolling Contact Bearings

Table 1.1 Classification and Types of Rolling Contact Bearings Radial Bearings > Ball Bearings

	Bearin	g Types	Cross	Bearing Seri	es Symbols
	200	9 .) 600	Sections	JIS	Others
		Without filling slot (JIS B 1521)		67 60 68 62 69 63	00B60 RLS RMS 16000
	Single row	Without filling slot [for unit ;JIS B 1558]		UC UM UWE UK UNE	U B KH
Deep Groove Ball Bearings		With filling slot		-	
	Double row	Without filling slot		-	
		With filling slot		-	42 43
Counter-Bored	Single row	Non-Separable		-	
Bearings		Separable (JIS B 1538)		E EN	ВМ

Table 1.1 Classification and Types of Rolling Contact Bearings Radial Bearings > Ball Bearings

	Bearin	g Types	Cross	Bearing Series Symbols				
	Deam	g Types	Sections	J	IS	Others		
Angular Contact Ball Bearings	Single	Non-Separable (JIS B 1522)		79 70	72 73			
	row	Separable -		-				
	Double row	Without filling slot		-		52 53		
		With filling slot		-	32 33			
	Duplex mounting	DB mounting DF mounting DT mounting		-				
Self-Aligning Ball Bearings	Double row	Outer ring raceway : spherical		12 13	22 23			

Table 1.1 Classification and Types of Rolling Contact Bearings Radial Bearings > Roller Bearings

	R	earing Type	ne.		Cross	Bearing Series Symbols		
	D	samig Type	75		Sections	JIS	Others	
		Inner ring	Without loose rib	Outou sino		NJ2 NJ23 NJ22 NJ4 NJ3		
		with a rib	With loose rib	Outer ring with ribs on both sides [JIS B 1533]		NH2 NH23 NH22 NH4 NH3		
	Single row	Inner ring without rib		•		NU10 NU3 NU2 NU23 NU22 NU4		
Cylindrical Roller Bearings		Inner ring with ribs		Outer ring with a rib [JIS B 1533]		NF2 NF3 NF4		
		on both sides		Outer ring without rib		N2 N3 N4	N10	
	Double row	Inner ring with ribs on both sides		Outer ring without rib		NN30		
		Inner ring without rib		Outer ring with ribs on both sides		NNU49		

Table 1.1 Classification and Types of Rolling Contact Bearings Radial Bearings > Roller Bearings

	R	earing Types		Cross	Bearing Seri	es Symbols
		eaning Types		Sections	JIS	Others
Needle Roller	Single	Inner ring without rib	Outer ring with ribs		NA48 NA49	
Bearings	row	Without inner ring	on both sides		RNA48 RNA49	
	Single row	Separable (JIS B 1534)			320 303 302 303D 322 323	329 331 330 313 332
Tapered Roller	Double row	Separable (Inward)			-	KBD
Bearings		Separable (Outward)			-	KBE KDE
	Four row	Separable			-	
Spherical Roller	Single row	Outer ring raceway : spherical			-	
Bearings	Double row	Outer ring raceway : spherical			239 231 232 230 241 213 240 222 223	

Table 1.1 Classification and Types of Rolling Contact Bearings Thrust Bearings > Ball Bearings

	Poorin	g Typoo	Cross	Bearing	Series Symbols		
	Deann	g Types	Sections	JIS	Others		
		Flat back face (JIS B 1532)		511 513 512 514	29 39 9 0		
		Flat back face		-	TMN		
	Single direction	Flat back face		-	TG		
Thrust Ball Bearings		Spherical back face		-	532(U) 7(U) 533(U) 37(U) 534(U) OOT6(U)		
	Double	Flat back face (JIS B 1532)		522 523 524	19		
	direction	Spherical back face		-	542(U) 543(U) 544(U)		
Thrust	Single direction	Non-Separable (DB, DF, DT)		-	TAB		
Angular Contact Ball Bearings	Double direction	Separable		-	TAD		

Table 1.1 Classification and Types of Rolling Contact Bearings Thrust Bearings > Roller Bearings

	Bearing Type	S	Cross	Bearing Series Symbols		
	boaring Typo	·	Sections	JIS	Others	
Thrust Cylindrical Roller Bearings	Single	Flat back face		-	ТМР	
Thrust Tapered Roller Bearings	direction	Flat back face		-		
Spherical Roller Thrust Bearings	Single direction	Outer ring raceway : spherical		292 293 294		

Table 1.1 Classification and Types of Rolling Contact Bearings Bearings for Specific Application

	Bearing Types	Cross	Bearing Ser	ies Symbols
	bearing Types	Sections	JIS	Others
Automotive Bearings	Self-Aligning Clutch-Release Ball Bearings		-	SCRN
	Ball Bearings for Wheel (1st type)		-	BVV
	Ball Bearings for Wheel (2nd type)		-	F BVV
	Ball Bearings for Air Conditioner Clutch		-	BG
Journal Bearings for Roll	ing Stocks		-	FCD JC AP
			-	JT
Sheave Bearings			-	E50 RB48 RC48

Features Bearing Type	Load carring capacity	High speed rotation	Accuracy	Low noise • Low torque	Permissible aligning of inner ring • outer ring	Rigidity	Aligning action	Separable inner ring • outer ring	Applicable to "fix side"	Applicable to "free side" only	Inner ring with tapered bore
Deep Groove Ball Bearings	↑ ← →	••••	•••	•••	••	•			0		0
Angular Contact Ball Bearings	↑ ←	••••	•••	•••	•	•					
Double Row Angular Contact Ball Bearings	† + +	•••	•	•	•	•			0		
Duplex Mounting Angular Contact Ball Bearings	_1 ₊	•••	•••	••	•	••			0		
Self-Aligning Ball Bearing	↑ ← →	••	•	•	•••	•	0				0
Cylindrical Roller Bearings	1	•••	•••	••	•	••		0		0	0
Double Row Cylindrical Roller Bearings	1	•••	•••	••	•	•••		0		0	0

Remarks

- (2) Mark " " shows possibility for getting the characteristics. More number of " " means much easier than less number. "X" mean "not applicable".
- (3) " _ " means "applicable". " _ " means "can be applicable", but shaft thermal expansion must be absorbed.
- (4) Thrust Ball/Roller Bearings can sustain axial loads ONLY.
- (5) This table is for reference only. Bearings should be selected for specific applications.

Table 1.2 Classification and Types of Rolling Contact Bearings

Features Bearing Type	Load carring capacity	High speed rotation	Accuracy	Low noise • Low torque	Permissible aligning of inner ring • outer ring	Rigidity	Aligning action	Separable inner ring • outer ring	Applicable	Applicable to "free side" only	Inner ring with tapered bore
Tapered Roller Bearings	†	••	•••	•	•	••		0			
Double-row Multi-row Tapered Roller Bearings	_1 ₊	••	•	•	•	••••		0	0		
Spherical Roller Bearings	1 →	••	•	•	•••	•••	0		0		0
Cylindrical Roller Bearings With One Rib Inner Ring	↑	•••	••	••	•	••		0			
Cylindrical Roller Bearings With L-shaped Thrust Collar	1 ← →	•••	••	••	•	••		0	0		
Needle Roller Bearings	1	••	•	•	•	••		0		0	

Remarks

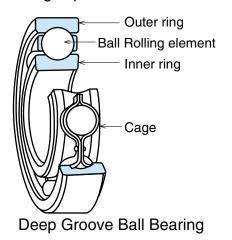
- (1) \uparrow and \leftarrow \rightarrow show radial load and axial load respectively \leftarrow and \leftarrow \rightarrow mean single direction and double directions respectively.
- (2) Mark " " shows possibility for getting the characteristics. More number of " " means much easier than less number. "X" mean "not applicable".
- (3) " o " means "applicable". " o " means "can be applicable", but shaft thermal expansion must be absorbed.
- (4) Thrust Ball/Roller Bearings can sustain axial loads ONLY.
- (5) This table is for reference only. Bearings should be selected for specific applications.

Features Bearing Type	Load carring capacity	High speed rotation	Accuracy	Low noise - Low torque	Permissible aligning of inner ring• outer ring	Rigidity	Aligning action	Separable inner ring - outer ring	Applicable to "fix side"	Applicable to "free side" only	Inner ring with tapered bore
Single Direction Thrust Ball Bearings With Flat Back Face	←	•	•	••	×	•		0			
Single Direction Thrust Ball Bearings With Spherical Flat Back Face	←	•	•	••	•••	•	0	0			
Double-row Thrust Angular Contact Ball Bearings	+ +	•••	•••	••	×	••		0			
Thrust Cylindrical Roller Bearings	←	•	•	•	×	•••		0			
Thrust Tapered Roller Bearings	←	•	•	•	×	•••		0			
Spherical Roller Thrust Bearings	<u></u>	•	•	•	•••	•••	0	0			

Remarks

- (1) \uparrow and \leftarrow \rightarrow show radial load and axial load respectively \leftarrow and \leftarrow \rightarrow mean single direction and double directions respectively.
- (2) Mark " " shows possibility for getting the characteristics. More number of " " means much easier than less number. "X" mean "not applicable".
- (3) " o " means "applicable". " o " means "can be applicable", but shaft thermal expansion must be absorbed.
- (4) Thrust Ball/Roller Bearings can sustain axial loads ONLY.
- (5) This table is for reference only. Bearings should be selected for specific applications.

1.2 Rolling Contact Bearing Designs and Features


Rolling Contact Bearings usually consist of an inner ring, outer ring, and rolling elements (balls or rollers), and a cage which positions the rolling elements at fixed intervals between the ring raceways. (See Figure 1).

Standard materials for inner and outer rings, and for the rolling elements, are high carbon chromium bearing steel or case hardening steel. The steel is heat-treated to an appropriate hardness to attain optimum resistance to rolling fatigue. Bearing surfaces are ground to a very high accuracy using special machine tools.

While each of the various types of rolling contact bearings has special features, the following features are common to most rolling contact bearing types:

- Rolling contact bearings have relatively low starting resistance. There is little difference between the starting and running resistance of rolling contact bearings.
- Dimensions and accuracy are standardized. Ready-made products of high quality are easy to obtain.
- Compared to "sliding" bearings, rolling contact bearings are less prone to wear and help to maintain the accuracy of the machine in which they are used.
- Rolling contact bearings consume small amounts of lubricant and are far less costly to maintain than sliding-type bearings.
- While not common to all rolling contact bearings, many types can sustain both axial and radial loads.

To get optimum performance from a selected bearing, it is necessary to understand the design and features of the various bearing types and to then select bearings optimal to individual machine performance.

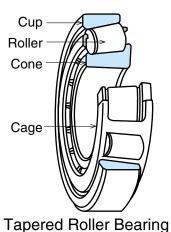


Fig 1. Rolling Contact Bearing Designes

1.2.1 Deep Groove Ball Bearings

Deep Groove ball bearings are the most popular of all the ball bearing types because they are available in a wide variety of seal, shield and snap-ring arrangements.

The bearing ring grooves are circular arcs made slightly larger than the radius of the ball. The balls make point contact with the raceways (elliptical contact when loaded). The inner ring shoulders are of equal height (as the outer ring shoulders).

Deep Groove ball bearings can sustain radial, axial, or composite loads and because of simple design, this bearing type can be produced to provide both high-running accuracy and high-speed operation.

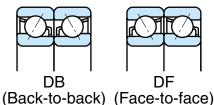
Deep Groove ball bearings having an outside diameter less than 9 mm are known as Miniature ball bearings. Deep Groove ball bearings having an outside diameter => 9 mm and a bore diameter < 10 mm are known as Extra-small ball bearings.

Standard ball retainers (cages) are made from pressed steel. Machined cages are used in bearing operating at very high speed or for large diameter bearings.

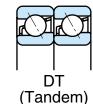
Deep groove ball bearings with seals or shields are standardized. They contain proper amount of grease in advance.

1.2.2 Single-row Angular Contact Ball Bearings

The raceways of both the inner and outer rings of this bearing type are made with a set contact angle. These bearings are non-separable. Since the balls are inserted utilizing counter-bore construction, a larger number of balls can be installed than in the case of Deep-groove ball bearings.


Standard cage materials may be pressed steel, high-strength brass, or synthetic resin. Cage material is dependent on the bearing series and or service condition.

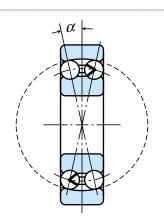
Single-row Angular Contact ball bearings can sustain radial, axial or composite loads, however, any axial load must be in one direction.


This bearing type is generally used in pairs to handle the induced load resulting from the internal axial force generated by the applied radial load. When mounting two single bearings in adjacent positions, NACHI provides these combination parts (pairs) with preadjusted clearance. Paired combination bearings are matched sets. Combination or paired bearings can be arranged BACK-TO-BACK (DB), FACE-TO-FACE (DF), or in TANDEM (DT). DB or DF sets can sustain bidirectional axial loads.

1.2.3 Double-row Angular Contact Ball Bearings

The construction of this type ball bearing is similar to the adjacent, BACK-TO-BACK mounting of two Single-row Angular Contact ball bearings. Because fewer balls can be inserted per row compared to Single-row Angular Contact ball bearings, a Double-row Angular Contact ball bearing will have less load capacity than an equivalent size/series BACK-TO-BACK set of two Single-row Angular Contact ball bearings.

This bearing type can sustain radial, moment and bi-directional axial loads.



1.2.4 Self-aligning Ball Bearings

This type is constructed with the inner ring and ball assembly contained within an outer ring which has a spherical raceway. Due to the construction, this bearing type will tolerate a small angular misalignment from deflection or mounting error.

Self-aligning Ball bearings are suitable for long shafts where accurate positioning of housing bores is difficult. This type is often used in conjunction with pillow blocks. Cages are made from pressed steel or polyamide resin.

This bearing should only be used in light axial load applications due to the small axial support of the rolling elements by the outer ring raceway.

1.2.5 Cylindrical Roller Bearings

Construction of this roller bearing type is the simplest of all radial roller bearings. This bearing type is often used in high-speed applications.

Because the inner ring, outer ring, and rollers are in line contact, this bearing type has a large radial load capacity. Various Cylindrical roller bearing configurations are:

N,NJ,NF,NU,RNU : integral ribs (flanges)
NH,NP,NUP,NUH : integral and loose ribs
NN,NNU : double-row bearings

[Continue→]

(See the Cylindrical roller bearing dimensional data section for description of configuration design).

Configurations having integral flanges or loose ribs on both the inner and outer rings can sustain a small amount of axial load. Since this bearing type supports axial loads as sliding action between the end of the rollers and flange faces, axial loading is limited.

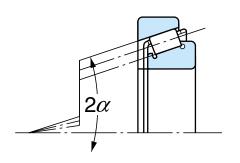
Double-row Cylindrical roller bearings are used for high-speed, high-accuracy applications such as; main spindle support for lathes, milling machines, and machining centers. Radial clearance of tapered-bore bearings can be adjusted during mounting of the bearing(s) onto the mating journal. Standard cages are pressed steel or polyamide resin. Machined cages of high-strength brass are used for bearings of large dimension or for high-speed applications.

1.2.6 Tapered Roller Bearings

The inner and outer ring raceways and rollers of this type of bearing are made with a taper so that the planes of the surfaces of the raceways and roller axis meet at a point. The rollers are guided by the cone (inner ring) backface rib.

A single-row Tapered roller bearing can support a combined radial and axial load. If either a radial load or bi-directional axial load is to be carried, a pair of bearings must be used in a "face-to-face" or "back-to-back" position.

Tapered roller bearings are separable into the components: outer ring, inner ring and roller assembly. The non-separable inner ring and roller assembly is called the "cone", and the outer ring is called the "cup". Internal clearance is established during mounting by the axial positioning of the cone relative to the cup.


This bearing type can be used in a preload situation to obtain higher rigidity and better running accuracy of the shaft.

Double-row and four-row Tapered roller bearings are designed to carry radial, and bi-directional axial loads. Four-row Tapered roller bearings are used for the roll necks of rolling machines and for other applications where heavy or impact loads are present.

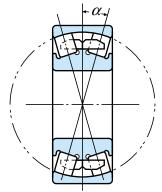
Multi-row Tapered roller bearings have the serial number and the combination symbol stamped on the faces of the rings for clearance adjustment and must be assembled according to this number and symbol.

Pressed steel cages are used for small bore bearings and machined, high-strength brass or mild-steel cages are used for bearings with larger bores. Heavy-duty pin-type cages are used for some large-bore bearings.

1.2.7 Spherical Roller Bearings

NACHI double-row Spherical roller bearings are available in bore sizes from 25 mm to over 1000 mm.

The raceways in the outer ring of this type bearing are designed with a spherical surface whose center coincides with the bearing center.


NACHI Spherical roller bearings are of an improved design having a modified line contact between the raceways and rollers. This construction enables very high radial and impact-load capacity.

This bearing type can carry a moderately-high level of bi-directional axial load and is self-aligning. This type is used extensively for large machines where shaft deflection or mounting error may occur.

Spherical roller bearings are used for paper mill equipment, rolling machines, rolling stock, shaker screens and general industrial machinery. The mounting and dismounting of Spherical roller bearings is facilitated through the use of tapered-bore bearings in conjunction with tapered journals, or adapters or withdrawal sleeves. Internal clearance can also be precisely set using a tapered-bore bearing.

Pressed steel cages are used for small-bore bearings and machined, high-strength brass or mild-steel cages are used for bearings with larger bores.

1.2.8 Thrust Ball Bearings

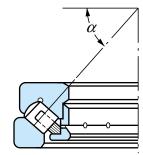
Thrust ball bearings can handle axial loads only. Bearing rings mounted on the shaft are called shaft washers, and those mounted in the bearing housing are called housing washers. Both washers contain grooves for the balls.

Thrust Ball bearings are of two types: single type which can support axial loads in only one direction and double type that can support bi-directional loads. The central washer of double type thrust ball bearing is located in an axial direction by a shaft shoulder and sleeve.

Thrust Ball bearings are not suitable for high-speed rotation since lubricant is expelled by centrifugal force. When used on a horizontal shaft, a minimum axial load must be applied.

Pressed steel plate, polyamide resin, machined high-strength brass or mild steel are used for cages.

Care must be taken in handling to prevent damage to the separable rings and ball assembly.


1.2.9 Spherical Roller Thrust Bearings

The raceway of housing washer of this bearing type is spherical with the center of the radius located on the bearing axis. The design provides self-alignment capability to the bearing. The contact angle (see sketch below) is approximately 45° enabling the bearing to support axial load and a small to moderate amount of radial load.

NACHI Spherical Roller Thrust bearings can sustain high loads at low-to-moderate speeds.

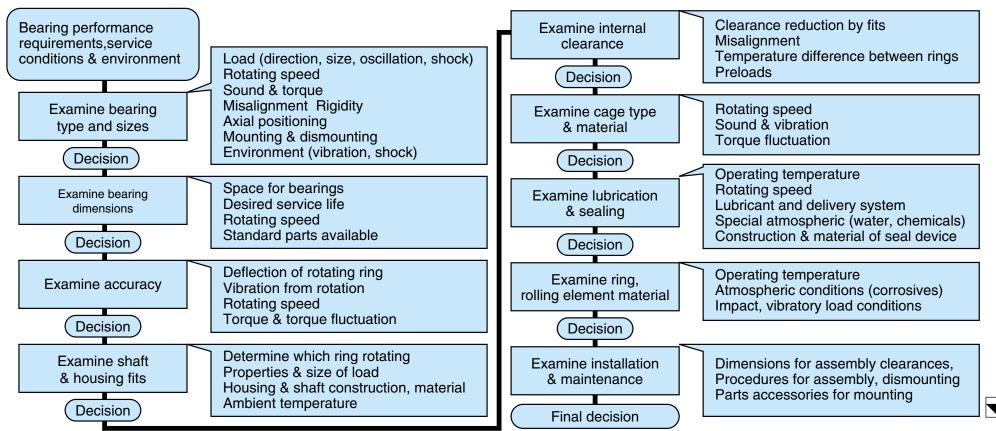
Because of the large load capacity and self-aligning characteristics, this bearing type is often used for injection molding machines, crane hooks and other large machines. Cages are made from machined, high-strength brass or pressed steel.

Back

2. Selection of Bearings

Introduction

- 2.1 Bearing Type Selection Considerations
 - 2.1.1 Load
 - 2.1.2 Rotating Speed
 - 2.1.3 Noise and Torque
 - 2.1.4 Alignment
 - 2.1.5 Rigidity
 - 2.1.6 Mounting, Dismounting
 - 2.1.7 Axial Location; Bearing Arrangement
 - 2.1.8 Bearing Environment



2. Selection of Rolling Contact Bearings

Rolling contact bearings are important, often critical, components of machinery. To meet the demands of a large variety of applications, rolling contact bearings are manufactured in a wide variety of types, sizes, and configurations. While machine performance and service life depend on which bearings are selected, it is often difficult to select the optimal bearing from among the many available variations.

While there is no "best" procedure for selecting the optimal bearing, Figure 2.1 provides an example of a procedure based on the establishment of priorities for the required bearing characteristics.

Fig. 2.1 Bearing Selection Procedure

2.1 Bearing Type Selection Considerations

2.1.1 Load

Bearing types are selected according to the types of load (radial, axial, moment) and the magnitude of these loads on the bearing. Table 2.1 outlines the types of load and applicable bearing types. In bearings of identical dimensional series, a roller bearing will have a greater load rating capacity than a ball bearing.

Table 2.1 Applicable Bearings vs Load Type

Load type	Radial	•		•	•		•
	Axial		•	•		•	•
Bearing type	Moment				•	•	•
Ball bearings: Single	e-row Deep Groove	0	Δ	0	0	Δ	0
Single	e-row Angular Contact		0	0			
Paired	d Angular Contact	0	0	0	0	0	0
Doubl	Double-row Angular Contact			0	0	Δ	0
Roller bearings: Cylind	drical	0		Δ			
Single	e-row Tapered		0	0			
Paired	d Tapered	0	0	0	0	0	0
Multi-row Tapered		0	0	0	0	0	0
Spherical radial		0		Δ			
Sphei	rical thrust		0			Δ	

Remarks: ○ Bearing type can meet the load type.

[△] Bearing can meet the load type conditionally. (Contact NACHI for more information.)

2.1.2 Rotating Speed

Limiting speed of bearings is determined by bearing type, bearing dimensions, accuracy of work, construction of cages, load, lubricating system, and seal type and design. The bearing dimension tables show the rotating speed limits of standard rolling contact bearings as a criterion of bearing type selection.

Bearings used at high rotating speeds should generally have high accuracy. In applications over the limiting speed, please consult NACHI for assistance.

2.1.3 Noise and Torque

All NACHI rolling contact bearings are designed and manufactured to operate with low noise and torque levels. Of the many types of ball and roller bearings, single-row deep-groove ball bearings will tend to operate with the lowest noise and torque levels.

2.1.4 Alignment

If the accuracy of alignment of the shaft and bearing housing is poor or the shaft is deflected due to load, the inner and outer rings of the bearings will be misaligned.

Non-self-aligning rolling contact bearings are capable of tolerating only that amount of misalignment which can be handled by the assembled internal clearance. If inclination is expected to occur between the inner and outer rings, the choice of bearings should be from types such as thrust ball bearings with self-aligning washer, Self-aligning ball bearings, or Spherical roller bearings.

The permissible angle of inclination of bearings differs by bearing type, internal clearance, and load conditions. Table 2.2 outlines the permissible angles of mis-alignment by bearing type.

Internal bearing damage can occur if misalignment in the bearing is greater than the permissible angle. Please contact NACHI for assistance.

Table 2.2 Permissible Misalignment of Bearing Types

Bearing type	Permissible angle of misalignment	
Single-row deep groove ball bearings	1/300	
Single-row angular contact ball bearings	1/1000	
Cylindrical roller bearings	1/1000	
Tapered roller bearings	1/800	
Thrust ball bearings	1/2000	

2.1.5 Rigidity

When rolling contact bearings are loaded, the contact section between the bearing rings and rolling elements will elastically deform. The magnitude of this elastic deformation will differ depending on load, bearing type, and bearing dimensions.

If bearings of identical dimension series are compared, roller bearings will have a much higher level of rigidity than ball bearings, and if bearings of identical type are compared, bearings of larger dimensions will have higher rigidity than those of smaller dimensions. (Preloading combinations of units of two or more bearings will increase rigidity.)

2.1.6 Mounting, Dismounting

Rolling contact bearings can be divided into bearing types classed as separable or non-separable. Mounting and dismounting is facilitated if a separable bearing type is used.

Use of tapered-bore bearings and sleeves or hydraulic assist also makes bearing mounting and dismounting easier.

There is a possibility that noise and shortening of life occur due to poor mounting of bearings. When bearings are mounted, the following items should be noticed.

- -Keep the bearings clean
- -Rust prevention
- -Protect bearings from external damage

2.1.7 Axial Location; Bearing Arrangement

Generally the shaft is supported by two units (or the equivalent to two units) of bearings. Generally, one of the bearings acts to hold (or fix) the axial position of the assembly and the other bearing acts to allow linear expansion.

The fixed side bearings must be firmly seated against both housing and shaft.

Table 2.3 shows representative examples of actual bearing arrangements according to service conditions.

Table 2.3 Examples of Bearing Arrangements

2.1.8 Bearing Environment

If there is a comparatively large source of vibration near the bearing mount, or if the bearing is to handle impact loading, the use of Spherical roller bearings or Spherical roller thrust bearings is recommended.

Standard bearings will be not suitable to be operated under severe condition (load, rotating speed, operating temperature, lubrication amount, vibrating environment).

Table 2.3 Examples of Bearing Arrangements

No.	Mounting examples	Applicable bearings		Application & design considerations	
INO.		A	В	Application & design considerations	
	A B	Deep Groove Ball	Deep Groove Ball	Popular mounting. Ball bearings can support light- to-moderate axial loads. Spherical roller bearings are good for heavy radial	
1		Spherical Roller	Spherical Roller	loads and light axial loads. One of the bearing outer ring must be free to move axially to handle thermal expansion.	
2	A B	Cylindrical Roller; N, NU configuration	Deep Groove Ball	Popular mounting. Axial expansion of shaft taken by inner ring of Cylindrical roller bearing. Use a Cylindrical roller bearing for the heavy load position. The Deep groove ball bearing carries the axial load. Not recommended for handling angular misalignment.	
3	A B	Cylindrical Roller; NH configuration	Cylindrical Roller; N, NU configuration	Easy mounting arrangement where interference fit is required for both inner and outer rings. Not recommended for handling angular misalignment. Thermal expansion taken internally. Suitable for light axial load applications.	

Table 2.3 Examples of Bearing Arrangements

No.	Mounting examples	Applicable bearings		Application & design considerations	
INO.	woulding examples	Α	В	Application & design considerations	
4		Deep Groove Ball	Deep Groove Ball	Preloading allows good rigidity. Care must be taken in design of preload amount. Angular contact ball bearings are better than Deep groove ball bearings for moderate axial laods and preload.	
•	A B	Angular Contact Ball	Angular Contact Ball		
(E)	A B	Deep Groove Ball	Double-Row Angular Contact Ball	Good for moderate, bidirectional axial loads. When using Deep groove ball bearings in position <a>, and double-row bearings in position , the outer ring of one of the parts must be free to move axially for	
5		Cylindrical Roller; N, NU configuration	Double-Row Angular Contact Ball	thermal expansion. If an N, or NU configuration bearing is used in position <a>, thermal expansion can be taken internally and a much greater radial load can taken on side <a>.	
6		Self-Aligning Ball	Self-Aligning Ball	Good for small angular misalignment. Use with adapter for long shafts which eliminates costly, shaft-weakening shaft shoulders and threading. Outer ring of one bearing must be free to move to compensate for thermal expansion or mouting	
		Spherical Roller	Spherical Roller	error. Axial load capacity is light for ball bearing and moderate for Spherical roller bearing. Check with NACHI if Fa/Fr ratio is greater than 0.6 for Spherical roller bearings.	

Table 2.3 Examples of Bearing Arrangements

No.	Mounting examples	Applicable bearings		Application & design considerations	
INO.	Modifiling examples	Α	В	Application & design considerations	
7	A B	Tapered Roller	Tapered Roller	General application, direct mounting ("face-to-face"). Good for heavy axial loads. Clearance easily adjustable. Assembly is convenient where one or both inner ring are interference-fit to shaft.	
8	A B	Tapered Roller Angular Contact Ball	Tapered Roller Angular Contact Ball	Indirect mounting ("back-to-back"). Good shaft rigidity. Good for moment loading. Good for large axial and radial loads. Use care in establishing preload or clearance.	
9	A B	Tapered Roller	Cylindrical Roller; N, NU configuration	Good for heavy loads and radial and axial rigidity. Clearance on side <a> easy to adjust. Thermal expansion can be taken by Cylindrical roller bearing. Alignment must be accurate.	

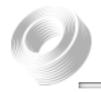


Table 2.3 Examples of Bearing Arrangements

No.	Mounting examples	Applicable bearings		Application & design considerations	
INO.	wounting examples	Α	В	Application & design considerations	
100	DB DT B	Paired Angular Contact Ball	Paired Angular Contact Ball	Good for very accurate rotation and light loads. Two bearings are used in pairs with preload. Good shaft rigidity. Alignment must be accurate. Mounting example above the shaft center line is DB ("back-to-back") mount; below line is DT ("tandem") mount.	
11)		Deep Groove Ball & Thrust Ball	Cylindrical Roller	Thrust bearing should be close to radial bearing to reduce shaft deflection. When using Thrust ball bearing on a horizontal shaft, it is important to keep a load on the thrust	
		Cylindrical Roller & Thrust Ball	Cylindrical Roller	bearing at all times. If there is shaft deflection at the thrust bearing location, use of a Thrust ball bearing with aligning washer arrangement is recommended.	
12		Spherical Roller Thrust	Various Radial Types	Spherical roller thrust bearings are applicable if radial load is 55% or less than that of axial load. Suitable for heavy axial load. Good where there is shaft deflection and housing accuracy error. Axial load must be continuous. Used in conjunction with radial bearings at low-to-moderate speed.	

3. Load Capacity and Life of Bearings

- 3.1 Basic Dynamic Load Rating and Rating Life
- 3.2 Basic Rating Life Calculation Guide
- 3.3 Rating Life and Operating Temperature
- 3.4 Calculation of Bearings Load
- 3.5 Dynamic Equivalent Load
- 3.6 Basic Static Load Rating and Static Equivalent Load
- 3.7 Axial Load Capacity of Cylindrical Roller Bearings

3. Load Capacity and Life of Rolling Contact Bearings

3.1 Basic Dynamic Load Rating and Rating Life

Although requirements of rolling contact bearings vary somewhat with the individual application the principal requirements are:

- High load capabilities
- Smooth and quiet rotation
- High rigidity
- Low friction
- High accuracy
- Reliability

The reliability or durability requirement sets the time frame over which all other requirements are to be maintained. The reliability requirement (life in the broad sense) includes grease and acoustic life, as well as fatigue life. Reliability is reduced by various types of damage and degradation.

Improper handling, mounting, lubrication, and fits are the major causes of problems leading to lower-than-calculated bearing life. Regardless of how well they are maintained or mounted or handled, dynamic bearings will eventually fail from rolling fatigue generated by the repetitive stress of bearing load.

The service life of a bearing can be examined from two perspectives: 1)If, from inspection, a trace of fatigue becomes noticeable, the bearing should be deemed not suitable for further use; or 2) length of bearing life in hours or revolutions can be predefined as a limit beyond which the bearing is automatically replaced.

Since calculated fatigue life will vary with the size and type of bearings used under identical load conditions, great care must be taken in the analysis of the load conditions and the final choice of bearings to satisfy the application requirements.

Fatigue lives of individual bearing are dispersed. When a group of identical bearings operate under the same conditions, the statistical phenomenon of dispersion will appear. Use of average life is not an adequate criterion for selecting rolling contact bearings. Instead, it is more appropriate to consider a limit (hours or numbers of revolutions) which a large percentage of the operating bearings can attain. Accordingly, the rating life and basic dynamic load rating Cr or Ca are defined using the following definition:

- Basic rating life is defined as the total number of revolutions (or total operating hours at some given constant speed) that 90% of a group of identical bearings operated individually under equal conditions can complete without suffering material damage from rolling fatigue.
- Basic dynamic load rating (Cr or Ca) is defined as a bearing load of constant direction and size that ends the bearing life after a million revolutions.

[Continue→]

$$L = \left(\frac{C}{P}\right)^{p} \qquad \bullet \bullet \bullet \bullet \bullet \bullet (3.1)$$

$$Lh = \left(\frac{C}{P}\right)^{p} \cdot \frac{10^{6}}{60 \text{ n}} \qquad \bullet \bullet \bullet \bullet \bullet \bullet (3.2)$$

The relationship of fh, the bearing life factor and fn, the speed factor, is outlined in Table 3.1.

Formula (3.3) may be used to determine the basic dynamic load rating, C, of bearings given the bearing equivalent load, P, and the operating speed, n, in revolutions-per-minute.

The lives of automobile wheel bearings may be defined in kilometers using the formula (3.4).

Table 3.2 shows values for the life factor, fh, by application and machine type.

If a bearing is used with vibrating or impact loads or low speed including no rotation, additional study with basic static load rating is required.

$$C = \frac{P}{fn} \cdot \left(\frac{Lh}{500}\right)^{1/p} \qquad \bullet \bullet \bullet \bullet \bullet \bullet (3.3)$$

$$Ls = \frac{\pi \cdot D}{1000} \cdot L$$
 •••• (3.4)

Back

Table 3.2 Life Factors (fh)

Where:

L: Basic rating life (10° rev.)

Lh: Basic rating life in hours

C: Basic dynamic load rating (N). (Cr for radial bearings and Ca for thrust bearings)

P: Bearing load (dynamic equivalent load) (N) Pr for radial, and, Pa for thrust bearings

p: 3 for ball, 10/3 for roller bearings

n: Rotating speed (rpm)

Table 3.1 Bearing Basic Rating Life; Life and Speed Factors

	Ball Bearings	Roller Bearings
Basic Rating Life	Lh = 500fh ³	$Lh = 500fh^{\frac{10}{3}}$
Life Factor	$fh = fn \frac{C}{P}$	$fh = fn \frac{C}{P}$
Speed Factor	$fn = \left(\frac{10^6}{500 \times 60n}\right)^{\frac{1}{3}}$	$fn = \left(\frac{10^6}{500 \times 60n}\right)^{\frac{3}{10}}$

Where:

Ls: Kilometer traveled (10⁶ km)

D: Outside diameter of wheel (m)

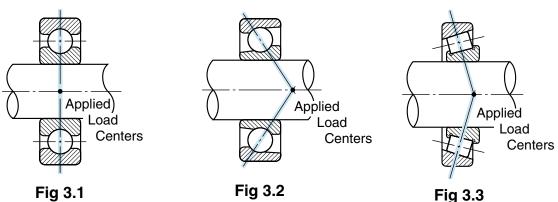

L: Life in revolutions

Table 3.2 Life Factors (fh)

Application conditions	Application example	Life Factor (fh)
Infrequent use	Hinges	to 1.5
Short period or Intermittent use	Hand tools Agricultural equipment Household apparatus Casting plant cranes	2 ~ 3
Intermittent, critical use	Power plant auxiliary machines Assembly line conveyers General crane applications Motors for home air conditioning	3 ~ 4
8 hour per day, intermittent	General gearing applications General industrial motors	3 ~ 5
8 hour per day, continuous	Cranes in continuous use Air blowers Mechanical power transmission General industrial machinery Industrdal wood-working machines	4 ~ 5
24 hour per day, continuous	Compressors Mine hoists Marine propeller shafts Rolling machine tables	5 ~ 8
24 hour per, critical	Paper manufacturing Power plants Water supply equipment Mine water pumps, air blowers	6-up

3.2 Basic Rating Life Calculation Guide

- Determine the bearing life normal to the application by using <u>Table 3.2</u> to define the life factor, fh.
- Use rating life charts (nomograms) to calculate life. The nomogram for ball bearings is shown in <u>Fig. 3.4</u>. The nomogram for roller bearings is shown in <u>Fig. 3.5</u>. These nomograms are based on formulas (3.1) and (3.2).
- Where operating temperatures are to be in excess of 150°c, a correction factor must be applied to the bearing basic dynamic load rating. (See Item 3.3.1).
- If the bearings are to operate with vibration or impact loading, or where a bearing mounting or manufacturing error exists, the actual load may be greater than the calculated load. In this case, the calculated load must be multiplied by a safety coefficient to obtain an approximation of the actual load. For safety coefficients in actual application, refer to the machine and drive factors. (See Item 3.4.1 and 3.4.2)
- Bearings do not always operate under a constant load. When the bearing operates with a fluctuation load, the load must be converted to a constant size reflecting the effect of the fluctuating load. Conversion may be done using weighted average mean loading (See Item 3.4.4).
- By definition, bearing load Pr (net radial load) or Pa (net axial load) is a load with constant direction and size. When a composite load of radial and axial loads occurs on a radial bearing, these loads must be converted to a radial load reflecting the effect of the composite load. This effective load is called the DYNAMIC EQUIVALENT LOAD. (See Item 3.5).
- When calculating bearing load using the loads on a position on the shaft, it is necessary to calculate center distance between the load application point of the bearings. Many bearing types have load center points at the center line of the width as shown in Fig. 3.1. Single-row Angular Contact ball bearings and single-row Tapered roller bearings, have load center points off-center to the center line of the bearing width (See Fig. 3.2 and 3.3 respectively). Refer to the dimension tables for the value of the off-set.
- The axial load limit for Cylindrical roller bearings is a function of the lubrication conditions and speed of rotation. This limit differs from a rating load as determined by fatigue life. (See Item 3.7).

[→Continue]

Calculation example: 1

Suppose that an application has selection parameters as follows:

Bore: 50 mm or smaller

Outside diameter: 100 mm or smaller

Width: 20 mm or smaller

Radial load (Fr): 4000 N (Newtons)

Rotating speed (n): 1800rpm Life factor (fh): 2 or greater

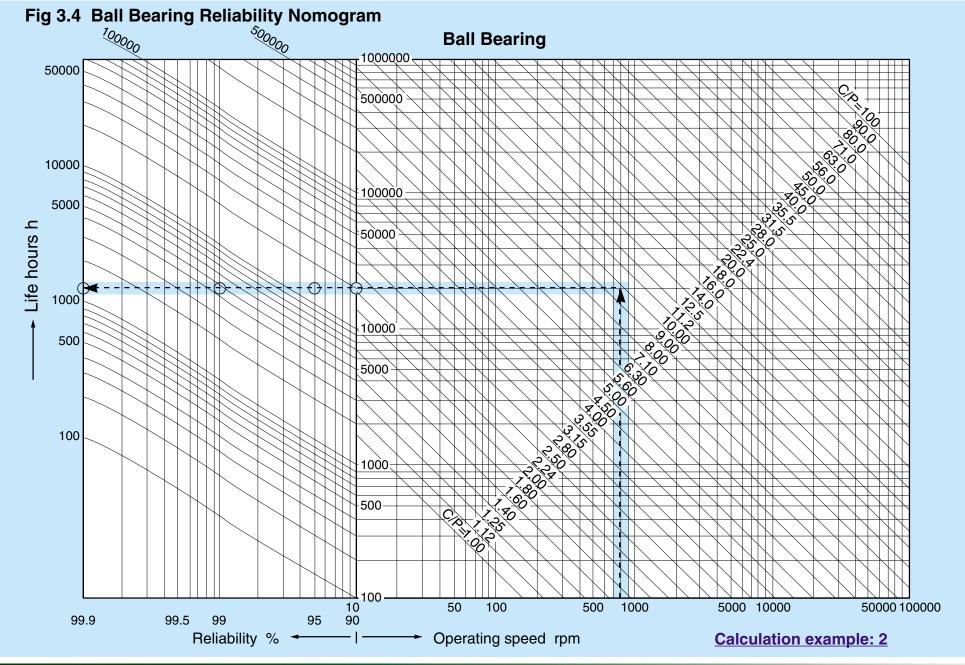
Bearing type: Single-row deep groove ball bearing

From Table 3.1 the speed factor, fn is obtained as follows:

$$fn = \left(\frac{10^6}{500 \times 60 \times 1800}\right)^{\frac{1}{3}} = 0.265$$

From Table 3.1,

$$Cr = \frac{fh \cdot P}{fn} = \frac{2 \times 4000}{0.265} = 30188N$$


Bearings having the required basic dynamic load rating are selected from the bearing dimension table(s). Of the two sizes meeting the load and diameter constraints, only bearing 6209 will satisfy the width constraint. Given the above parameters, bearing part 6209 would be the selection.

Bearing No.	Bore Dia. (mm)	Outside Dia. (mm)	Width (mm)	Basic Dynamic Load Rating (N)
6209	45	85	19	32500
6307	35	80	21	33500

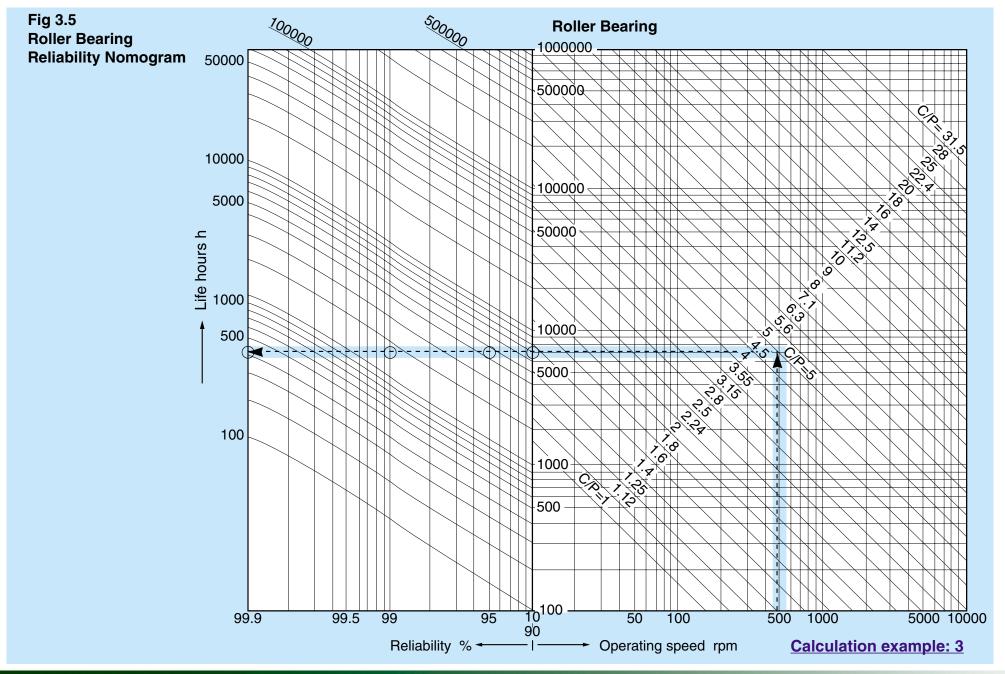


Fig 3.4 Ball Bearing Reliability Nomogram

Calculation example: 2

Bearing Number 6012 is loaded with an dynamic equivalent radial load Pr = 2950N.

Object is to obtain the life at various levels of reliability when the bearing is rotated at n = 800 rpm.

The basic dynamic load rating Cr is taken form the dimension table.

Cr = 29400NCr/Pr = 10

(*) For reliabilities, see Item 3. 3. 2.

By tracing the dotted lines, rating lives are obtained as follows:

Reliability (*) Life hours 90% 20000 95% 15000 99% 4500 99.9% 1200

Fig 3.5 Roller Bearing Reliability Nomogram

Calculation example: 3

Bearing Number 22222EX is loaded with dynamic equivalent radial load Pr = 98000N.

Object is to obtain the life at various levels of reliability when the bearing is rotated at n = 500 rpm.

The basic dynamic load rating Cr is taken from the dimension table.

Cr = 490000NCr/Pr = 5

By tracing the dotted lines, rating lives are obtained as follows:

Life hours Reliability (*) 90% 7000 95% 4400 99% 1500 99.9% 400

(*) For reliabilities, see Item 3. 3. 2.

3.3 Rating Life and Operating Temperature

3.3.1 Temperature-Related Decrease in Basic Dynamic Load Rating

Bearing ring diameters grow slightly with an increase in temperature. If the operating temperature does not exceed about 120°c, the bearing rings will return to their original dimensions at normal temperature. If the operating temperature exceeds this level (approximately 120°c), the bearing rings and rolling elements can undergo small, permanent changes in size. To prevent these permanent changes in size, special heat-stabilization treatment can be used (see Table 3.3).

Table 3.3 Heat - Stabilization Treatment

Max. Operating temperature	Heat stabilization treatment symbol
~ 150°C	S26
~ 200°C	S28

The S26 heat-treated bearings will resist dimensional change through a maximum temperature of 150°c. Bearings with the S26 heat-treated steel will suffer decreases to their rating life and will have dimensional changes if they are used at temperatures in excess of 150°c.

The S28 heat-treated bearings will resist dimensional change and have a temperature factor of 0.90 through a maximum temperature of 200°c.

Bearings with the S28 heat-treated steel will suffer further decreases to their rating life and will have dimensional changes if they are used at temperatures in excess of 200°c.

Operation at temperatures exceed the limit of the heat-stabilization should be avoided to prevent bad effects of these dimensional changes.

If bearings are operated at temperatures exceeding the limit of the heat-stabilization, hardness of the bearing steel will be reduced. In calculating the life of such bearings, the basic dynamic load rating must be multiplied by the temperature factor as shown in Table 3.4. The temperature factor for standard bearings operating at a temperature under 120°c is 1 and these bearings will show no dimensional change. Standard bearings run at an operating temperature exceeding 120°c, will experience dimensional changes and are subject to the basic dynamic load rating decreases as shown in Table 3.4.

Table 3.4 Temperature Factor

Bearing Temperature	~ 150°C	175°C	200°C
Temperature Factor	1	0.95	0.90

3.3.2 Life Calculation Factors

Rating Life Formula, L=(C/P)p...... (3.1), is used when applying rolling contact bearings for normal use. To provide for utilization of lubrication theory, and advances in bearing material and bearing manufacturing technological contact bearing and bearing manufacturing technological contact bearing and bearing manufacturing technological contact bearing and bearing manufacturing technological contact bearings for normal use.

To provide for utilization of lubrication theory, and advances in bearing material and bearing manufacturing technology, the ISO and JIS have adopted the following life calculation formula.

where:

Lna = $a_1 \cdot a_2 \cdot a_3 \cdot \left(\frac{C}{P}\right)^p$ ••••• (3.5)

Lna : Adjusted rating life (106 rev.)

a₁: Reliability factor a₂: Material factor

a₃ : Application conditions factor

Formula (3.5) is applicable only when all bearing loads are considered and operating conditions are clearly defined. Generally, reliability of 90% is used, and material and operating conditions may be considered as a₁, a₂, a₃=1, coinciding with formula (3.1).

1) Reliability Factor, a1

Reliability Factor, a1, becomes 1 if 90% of a group of identical bearings operated individually under the same conditions can complete the calculated life without exhibiting material damage from rolling fatigue. Reliability is then set as 90 %, and for reliability over 90%; a1 takes a value from Table 3.5.

As observed from <u>Table 3.5</u>, the calculated bearing life decreases in proportion to a higher level of bearing reliabilities.

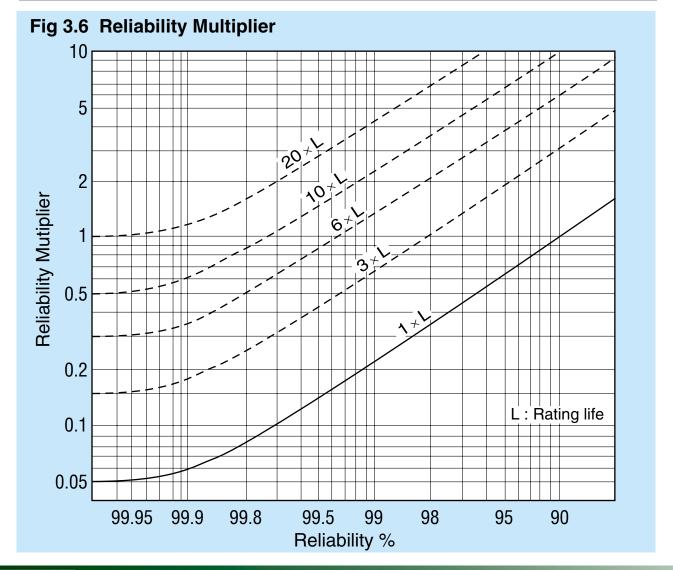

<u>Fig. 3.6</u> shows the improved reliabilities when bearings having rating lives of 3, 6, 10 and 20 times are used in comparison with the 90% reliability (life-multiplying factor being 1) of a bearing having a given rating life.

Table 3.5 Reliability Factor a₁

Reliability %	99	98	97	96	95	90
a ₁ factor	0.21	0.33	0.44	0.53	0.62	1

Calculation example: 4

Bearing Number 6209 is used to support a radial load of 3160N. Object is to define the life and select a bearing which will have a reliability of 99.4%.

The life corresponding to the reliability of 90% is obtained as follows by reading the basic dynamic load rating, Cr=32500N from the dimension table and using formula (3.1):

$$\left(\frac{32500}{3160}\right)^3 \times 10^6 = 1088 \times 10^6 \text{ rev.}$$

Reading Fig. 3.6, it can be seen that a bearing having a life -multiplying factor of 6 is required to attain 99.4% reliability. Applying this multiplier to the basic dynamic load rating, Cr as obtained from formula (3.1), will calculate as:

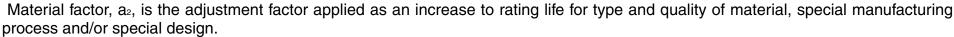
$$\left(\frac{Cr}{3160}\right)^3 \times 10^6 = 6 \times 1088 \times 10^6 \text{ rev.}$$

From the above equation, obtain;

$$Cr = (6)^{\frac{1}{3}} \times 32500 = 1.817 \times 32500$$

= 59000N

The bearing meeting this basic dynamic load rating (in the same diameter series) is bearing number 6214.



 $[Continue \rightarrow]$

2) Material factor, a2

The basic dynamic load rating, Cr (or Ca), listed in the bearing dimension tables reflects both the use of vacuum-degassed, high-carbon chrome bearing steel for all NACHI rolling contact bearings as well as improvements in manufacturing technology. The a₂-factor has a base value of 1 for NACHI standard parts.

Unless specialty steels are utilized, a₂ is defined as 1 when calculating the life using the formula (3.5).

3) Application condition factor, a₃

The application condition factor, a_3 , is used to consider bearing load conditions, lubricating conditions, and temperature conditions. Factor a_3 is set as 1 if the rolling elements and raceway surfaces are separated (good lubricating condition). When lubricating conditions are poor (as in the following cases), a_3 is less than 1:

- When the operating speed is <dm \cdot n of 10,000. (Where dm \cdot n=rolling element pitch diameter in millimeters times the speed in revolutions-per-minute).
- When lubricant will tend to deteriorate rapidly.

At present, it is difficult to quantify the application condition factor because of the many variables involved.

Because factors a_2 and a_3 have interactive effects on each other, these two factors are treated as one value (a_2) (a_3). When lubrication and application conditions are good, the value (a_2) (a_3) can be set as equal to 1.

In case of poor lubrication such as when lubricant viscosity is considerably low, please consult NACHI.

3.4 Calculation of Bearing Load

Generally, the load that is applied to the bearings is composed of loads generated by machine operation, drive components, and dead weight of the shaft and components mounted to and on the shaft. These loads can be precisely calculated. The above loads are usually accompanied by vibration and impact. With the exception of very special cases, it is impractical to calculate and add the specific effects of vibration and impact loading on each component in a machine. To facilitate the calculation and analysis of loading in a machine system, loading factors (based on empirical experience) have been developed as multipliers to the driving and static loads.

$$F = fs \cdot Fc$$
 ••••• (3.6)

where:

F: Bearing load (N)

fs: Machine factor (Table 3.6)

Fc: Calculated load (N)

When a load fluctuates in size, an average load must be calculated which reflects the effects of the fluctuating load.

When a composite load of radial and axial load occurs on a radial bearing, the loads must be converted to an effective radial load by use of the dynamic equivalent load formula for the specific bearing type. This value, P, is used in the basic rating life formula (3.1).

Table 3.6 Machine Factors, (f_s)

Type of Machine	fs
Smooth running machinery (no impact); motors, conveyors, turbo compressor, paper manufacturing machinery	1 ~ 1.2
Machine with low impact; reciprocating pumps, internal combustion engine, hoists, cranes	1.2 ~ 1.5
Machines with high impact; shears, crushers, rolling mill equipment	1.5 ~ 3.0

Table 3.7 Belt Drive Factors, (f₁)

Type of drive	f ₁
Flat leather belt (with tension pulley)	1.75 ~ 2.5
Flat leather belt (without tension pulley) Silk Rubber Balata	2.25 ~ 3.5
V-belt	1.5 ~ 2
Steel strip belt	4 ~ 6
Cotton belt / Hemp belt	2 ~ 6

Notes: 1. For low speed, use top value

Table 3.8 Gear Precision Factors, (f_z)

Type of gear	f _z
Precision (Pitch and form errors \leq 0.02mm)	1 ~ 1.1
Normal (Pitch and form errors 0.02 ~ 0.1mm)	1.1 ~ 1.3

3.4.1 Belt Drives

Transferring of power through belt drives requires on initial belt tension. Radial load, K, that occurs from this tension can be calculated as follows: where:

$$M = 955000 \cdot \frac{H}{n} \quad \bullet \bullet \bullet \bullet \bullet \bullet (3.7)$$

$$Kt = \frac{M}{r}$$
 (3.8)

M: Rotating moment of pulley (N • cm)

Kt : Effective transfer power of belt (N) (tension side minus slack side)

H: Transfer power (kW)

n: Rotating speed of pulley (rpm)

r: Radius of pulley (cm)

Load that works on the shaft through the pulley is calculated by multiplying the effective transfer power, Kt, by the belt drive factors, f, from Table 3.7.

Generally,

$$K = f \cdot Kt$$
 ••••• (3.9)

where:

K: Radial load (N) applied to the pulley transferred by the belt

f₁: Belt drive factor (Table 3.7)

3.4.2 Gear Drives

Shaft load from gear drives are calculated using the transfer power and type of gear.

Helical, bevel and worm gears transmit radial loads and create an axial load component, while spur gears transmit only radial loads.

Gear load formulas described below refer to spur gears.

$$M = 955000 \cdot \frac{H}{n}$$
 ••••• (3.10)

$$Kt = \frac{M}{r}$$
 (3.11)

$$Ks = Kt \cdot tan \alpha$$
 ••••• (3.12)

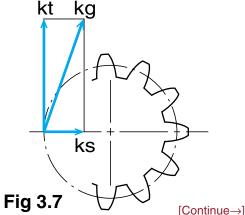
$$Kg = \sqrt{Kt^2 + Ks^2} = Kt \cdot \sec \alpha$$
 ••• (3.13)

where:

M: Rotating gear moment (N • cm)

Kt: Tangential component of force (N)

Ks: Radial component of force (N)


Kg: Total gear load (N)

H: Transfer power (kW)

n : Rotating speed (rpm)

r : Drive gear pitch radius (cm)

 α : Pressure angle of gear (°)

Kg, the total theoretical gear load, must be multiplied by both the gear precision factor and the machine factor (the latter of which takes into account impact and other forces dependent on machinery type).

$$K = fz \cdot fs \cdot Kg$$
 ••••• (3.14)

where:

K: Gear load transmitted to shaft (N)

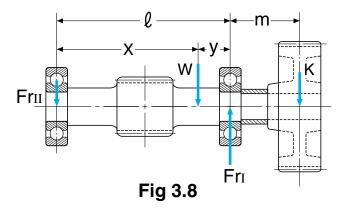
fz : Gear precision factor (<u>Table 3.8</u>)

fs: Machine factor (Table 3.6)

3.4.3 Load Distribution to Bearings

Load applied to a point on the shaft is distributed to the bearings supporting the shaft. Reference Fig. 3.8,

$$Fr_{I} = \frac{\ell + m}{\ell} K + \frac{x}{x + y} W \qquad \bullet \bullet \bullet \bullet \bullet \bullet \bullet (3.15)$$


Fr_I: Load working on bearing I (N)

 Fr_{II} : Load working on bearing II (N)

K: Gear load transmitted to shaft (N)

W: Shaft Weight (N)

 ℓ ,m,x,y: Relative positions of the points of applied force

3.4.4 Averaging Fluctuating Loads

A large load will have an emphasized effect on bearing life even if it is applied only for a very short duration of the total life-span of the bearing.

When the size of bearing load fluctuates with a defined cycle, bearing life may be calculated by deriving an average load simulating the affects of the fluctuating load.

(1) Step Type Load Fluctuation

where:

Fm: Average of fluctuating load (N)

n₁: Total number of revolutions at load F₁ (rev.)

n₂: Total number of revolutions at load F₂ (rev.)

n_n: Total number of revolutions at load Fn (rev.)

p: 3 for ball; 10/3 for roller bearings

In formula (3.17), if rotating speed is constant, and $(n_1+n_2+......+n_n)$ is referenced as applied time, then n_1 , n_2 and n_n , can be replaced by time periods t_1 , t_2 , t_n respectively, in the formula.

(2) Linear Load Fluctuation

When the load fluctuates almost linearly (see Fig. 3.10), the following formula is used to obtain the average load.

$$Fm = \frac{1}{3}Fmin + \frac{2}{3}Fmax$$
 ••••• (3.18)

where:

Fm: Average load (N)
Fmin: Minimum load (N)
Fmax: Maximum load (N)

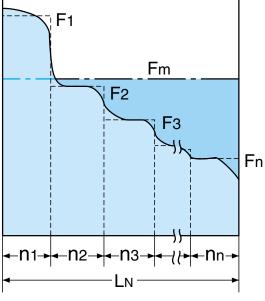
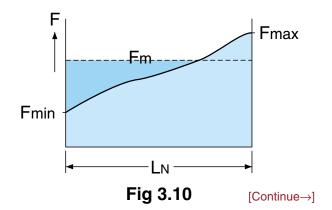



Fig 3.9

(3) Dynamic plus static load fluctuation

Where load F₁ of a constant size and direction, is combined with a constantly revolving load F₂ caused by an unbalanced load on the bearing (see Fig. 3.11), the average load is calculated using formula 3.19.

$$Fm = AF_1 + F_2$$
 ••••• (3.19)

Value of A is taken from Fig. 3.12.

Calculation example: 5

A Single-row Deep-groove ball bearing is loaded with the fluctuating radial loads shown below. Object: to obtain an average radial load on the bearing.

F₁=100N: 800 rpm for 6 sec F₂= 50N: 1800 rpm for 20 sec F₃=200N: 3600 rpm for 12 sec

Numbers of revolution for the individual loads F₁, F₂ and F₃ are derived for the formula as follows.

$$n_1 = \frac{6}{60} \times 800 = 80 \text{ rev.} \quad n_2 = \frac{20}{60} \times 1800 = 600 \text{ rev.} \quad n_3 = \frac{12}{60} \times 3600 = 720 \text{ rev.}$$

$$n = n_1 + n_2 + n_3 = 1400 \text{ rev}.$$

From formula (3.17),

$$Fm =$$

$$\sqrt[3]{\frac{100^3 \times 80 + 50^3 \times 600 + 200^3 \times 720}{1400}}$$

Back

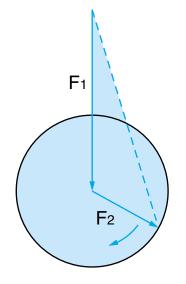


Fig 3.11

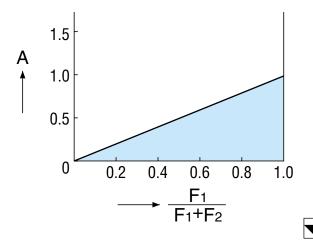


Fig 3.12

3.5 Dynamic Equivalent Load

Dynamic equivalent load refers to a load having constant direction and size such that theoretical calculations of bearing life using this load will simulate actual bearing life. This load is called dynamic equivalent radial load when calculated for radial bearings and dynamic equivalent axial load when calculated for thrust bearings.

In formula (3.1) expressing the relation between the bearing load and bearing life, bearing load, P, is either radial or axial load. Since radial and axial loads often occur simultaneously, the radial and axial loads must be converted to composite load within the dynamic equivalent load formula.

3.5.1 Dynamic Equivalent Radial Load

Dynamic equivalent radial load for radial bearings is calculated using the formula:

Pr=XFr+YFa ••••• (3.20)

In the above formula, if the axial load to radial load ratio, Fa/Fr, is less than or equal to e (a value determined by the bearing size and load as shown in the dimension tables), X, Y, and Pr will be as follows:

X = 1

Y = 0

Pr = Fr

where:

Χ

Υ

Pr : Dynamic equivalent radial load (N)

Fr : Radial load (N)
Fa : Axial load (N)

: Radial load factor

(from dimensional tables)

: Axial load factor

(from dimensional tables)

3.5.2 Dynamic Equivalent Axial Load

While most thrust bearings are incapable of supporting any radial load, Spherical roller thrust bearings will support some radial load. For Spherical roller thrust bearings, the dynamic equivalent axial load is derived using the formula:

Pa : Dynamic equivalent axial load (N)

Fa : Axial load (N) Fr : Radial load (N)

Fr / Fa must be ≤ 0.55

3.5.3 Dynamic Equivalent Load for Oscillating Loads

The dynamic equivalent load of radial bearings sustaining oscillating movements is derived using the formula:

$$Pr = \left(\frac{\Psi}{90^{\circ}}\right)^{1/p} (XFr + YFa) \qquad \bullet \bullet \bullet \bullet \bullet \bullet (3.22)$$

where:

 \mbox{Pr} : Dynamic equivalent load (N) X : Radial load factor $\mbox{$\Psi$}$: Angle of oscillation (from dimensional tables)

(Ψ must be ≥ 90°/Z) Y : Axial load factor : 3 for ball, 10/3 for roller bearings (from dimensional tables)

Fr : Radial load (N) Z : Number of rolling elements in row

Fa: Axial load (N)

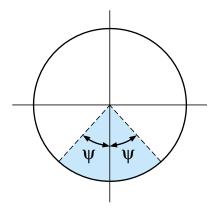
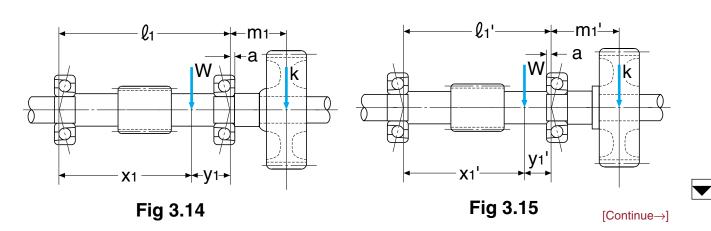



Fig 3.13

If the value of Ψ <90°/Z, the above formula may not accurately predict bearing life since localized wear may be generated in the raceways. (Oil lubrication may be tried to prevent the wear (false brinelling) associated with low-amplitude operation in this type application).

3.5.4 Angular Contact Ball; Tapered Roller Bearing Loads

For single-row Angular Contact ball and single-row Tapered roller bearings, the load center dimensions from the bearing tables must be used when determining the relative load positions. The load-center positions of these bearings are off-set from the midpoint of the width of these bearings as shown in Fig 3.14 and 3.15).

[→Continue]

The off-set dimension for Angular Contact ball and Tapered roller bearings is shown as the value "a" in the dimensional tables to indicate the load-center position. If moment loading is to be considered in a bearing system, location of load-center is of particular importance.

Where ℓ_1 , m_1 , x_1 or ℓ_1 , m_1 , x_2 , and y_1 are applied to formulas (3.15) and (3.16) as effective intervals instead of r, m, x, and y previously used in formulas (3.15) and (3.16). If the radial load is applied to two units of Tapered roller bearings used in pairs and induced axial load will be produced. The magnitude of this induced axial force Fa' is calculated using the formula:

$$Fa' = \frac{Fr}{2Y_1}$$

••••• (3.23)

where:

Υı : Axial load factor

(from dimension tables)

: External axial load (N) Fa'

Fr : Radial load (N)

Axial and equivalent radial load on bearing calculated using formulas in Tables 3.9.

Table 3.9 Axial and Equivalent Load of Angular Contact Ball and Tapered Roller Bearings

Fr1,Fr2: Radial load applied to bearings1and2(N)

Fa: External axial load (N) direction shown by Table 3.9

Fa1,Fa2: Axial load on bearings1and2(N)

Pr1,Pr2: Dynamic equivalent radial load on bearings1and2(N)

X1,X2: Radial Load Factor for bearings1and2from dimension tables

Y1,Y2: Axial Load Factor for bearings1and2from dimension tables

(Use Y1 for Tapered roller bearings)

Table 3.9 Axial and Equivalent Load of Angular Contact Ball and Tapered Roller Bearings

Bearing a	rangement	Load conditions	Axial load	Dynamic equivalent radial load
Fa Frı	Fa Frı	$Fa \ge 0.5 \left(\frac{Fr_{I}}{Y_{I}} - \frac{Fr_{II}}{Y_{II}} \right)$	Faπ=Faπ+Fa Faπ=0.5 Frπ Yπ	Prı=XıFrı+Yı(Faıı+Fa) Prıı=Frıı
Fa Fr ₁	Fa Frı	$Fa < 0.5 \left(\frac{Fr_{I}}{Y_{I}} - \frac{Fr_{II}}{Y_{II}} \right)$	Faı=0.5 Frı Yı Faı=Faı-Fa	Prı=Frı Prıı=XııFrıı+Yıı(Faı-Fa)
Fa Frı	Fa Frı	$Fa \ge 0.5 \left(\frac{Fr_{II}}{Y_{II}} - \frac{Fr_{I}}{Y_{I}} \right)$	Faı=0.5 Frı Yı Faı=Faı+Fa	Prı=Frı Prıı=XııFrıı+Yıı(Faı+Fa)
I II Fru Fru	Fa Frı	$Fa < 0.5 \left(\frac{Fr_{II}}{Y_{II}} - \frac{Fr_{I}}{Y_{I}} \right)$	Faɪ=Faɪɪ-Fa Faɪ=0.5 Frɪɪ Y ɪɪ	Prı=XıFrı+Yı(Faıı-Fa) Prıı=Frıı

Notes: 1. Equalities apply when the bearing clearance and preload are 0.

2. Radial load applied in reverse direction to the arrows above will be also treated as positive values.

3.6 Basic Static Load Rating and Static Equivalent Load

3.6.1 Basic Static Load Rating

Load applied to stationary bearings can create permanent indentations in the load surfaces. While some level of deformation can be tolerated, a level of deformation will be reached where noise and vibration during operation of the bearing, will make the bearing unusable.

The term "Basic static load rating" refers to the maximum contact stress value of the static load where the rolling element and raceways contact. The ratings are:

- Self-aligning ball bearing • 4600MPa
- Other ball bearings • 4200MPa
- Roller bearings • 4000 MPa

With these contact stresses, the sum of deformations (ball/roller and raceway) is approximately 1/10000 of the diameter of the rolling element.

Basic static load ratings are shown in the dimension tables for each bearing number. The symbol Cor is for radial bearings and the symbol Coa is for thrust bearings.

3.6.2 Static Equivalent Load

Static equivalent load is the static load that reflects the actual load conditions to the contact section of the rolling elements and raceway receiving the maximum stress. For radial bearings, radial load of a constant direction and size is called the static equivalent radial load, and for thrust bearings, axial load of a constant direction and size is called the static equivalent axial load.

1) Static equivalent radial load

To calculate the static equivalent radial load of a radial bearing supporting simultaneous radial and axial loads, the larger of the values obtained from formulas (3.24) and (3.25) are to be used

Por=XoFr+YoFa ••••• (3.24) where:

Por : Static equivalent radial load (N)

Por=Fr (3.25) Fr : Badial load (N)

••••• (3.25) Fr : Radial load (N) Fa : Axial load (N)

Xo & Yo: Static radial and axial load factors from dimension tables

[→Continue]

2) Static equivalent axial load

Static equivalent axial load for Spherical Thrust bearings is calculated using formula (3.26)

Poa=Fa+2.7Fr ••••• (3.26) where:

Poa : Static equivalent axial load (N)

a : Axial load (N) Fr/Fa must be ≤ 0.55

3.6.3 Safety Factor

The basic static load rating is considered as the limiting load for general applications. In terms of a safety factor, this means that, by definition, a safety factor, So, is set as a base of 1. An application may require a larger or allow a smaller safety factor. Table 3.10 provides a guide for selection of the safety factor, So, to be used with formula (3.27) for calculation of the maximum (weighted) static equivalent load.

Co=So • Pomax ••••• (3.27) where:

Co: Basic static load rating (N)

(Cor for radial; Coa for thrust bearings)

: Radial load (N)

So: Safety factor

(select from Table 3.10)

Pomax: Static equivalent load (N)

Table 3.10 Static Safety Factor (So)

Application condition	So		
Application condition	Ball Bearings	Roller Bearings	
High rotating accuracy is needed	2	3	
Vibration and/or impact present	1.5	2	
Normal operating conditions	1	1.5	
Small amount of permanent deformation is tolerable	0.7	1	

Note: So > 4 for spherical roller thrust bearings

3.7 Axial Load Capacity of Cylindrical Roller Bearings

Cylindrical roller bearings are generally used for supporting radial loads only. Bearings having flanges or loose ribs on both the inner and outer rings (such as on configurations NJ, NF, and NUP), however, are capable of supporting some amount of axial load. Since any axial loading on a cylindrical roller bearing is supported by a "sliding" action between the roller ends and flanges, allowable axial load is based on the limiting values of heat, seizure, and wear caused by this "sliding" contact.

Permissible axial loading (no consideration of bearing life as a radial bearing) on Cylindrical roller bearings is calculated using the following formula.

$$F_a = (pv) \frac{\lambda}{n}$$
 ••••• Allowable axial load (N)

pv: Application factor from Table 3.11.1

 λ : Bearing type factor from Table 3.11.2

n: Rotating speed (rpm)

However, there is another limits shown by the following formula because Fa exceeding the limits cause abnormal roller movement

Allowable axial load < K1 · Fr

Bearing series	K1
1000, 200, 200E 300, 300E, 400	0.2
2200, 2200E, 2300, 2300E	0.4

When cylindrical roller bearings are applied axial load, additional considerations are required as follows;

- Apply sufficient radial load to overcome axial load
- Supply sufficient lubricant between roller ends and flanges
- Use lubricant which has good film strength (pressure resistant) properties
- Practice good bearing mounting accuracy (see section 8.3)
- Allow sufficient running-in
- Minimize radial bearing clearance

Table 3.11.1 Application Factor (pv)

Operating conditions (Load and lubrication)	(pv)
Intermittent axial load, Good heat conduction and Good cooling or Very large amount of lubricant	5400 ~ 6900
Intermittent axial load, Good heat conduction and Large amount of lubricant	2600 ~ 3200
Oil lubrication, Good heat conduction or Good cooling	1900 ~ 2200
Continuous axial load and Oil lubrication or Intermittent axial load and Grease lubrication	1300 ~ 1600
Continuous axial load and Grease lubrication	690 ~ 780

Table 3.11.2 Bearing Type Factor λ

Diameter Series	λ
0	19d
2	32d
3	45d
4	60d

d=Bearing bore (mm)

4. Boundary Dimensions and Nomenclature

4.1 Boundary Dimensions

4.2 Radial Bearings(Except Tapered Roller Bearings)

Table 4.2.1

Table 4.2.2

- Diameter series 7
- Diameter series 8
- Diameter series 1
 - Diameter series 2

- Diameter series 9
- Diameter series 0
- Diameter series 3
- Diameter series 4

4.3 Boundary Dimensions of Tapered Roller Bearings

Table 4.3.1

Diameter series 9

Diameter series 1

Table 4.3.2 Diameter series 0

- Diameter series 2
- Diameter series 3

4.4 Boundary Dimensions of Thrust Bearings with Flat Back Face

Table 4.4.1

Table 4.4.2

Table 4.4.3

Table 4.4.4

- Diameter series 0
- Diameter series 2
- Diameter series 3
- Diameter series 4

Diameter series 1

Diameter series 5

4.5 Dimensions of Snap Ring Grooves and Snap Rings

- Table 4.5.1 Dimensions of Snap Ring Grooves for Bearing Dimension Series 18 and 19
- Table 4.5.2 Snap Ring Dimensions for Bearing Dimension Series 18 and 19
- Table 4.5.3 Dimensions of Snap Ring Grooves for Bearing Diameter Series 0, 2, 3 and 4
- Table 4.5.4 Snap Ring Dimensions for Bearing Diameter Series 0, 2, 3 and 4

4.6 NACHI Bearing Numbers

4. Boundary Dimensions and Bearing Numbers of Rolling Contact Bearings

4.1 Boundary Dimensions of Rolling Contact Bearings

Boundary dimensions have been established in a standard plan for metric rolling contact bearings to facilitate the selection process, improve availability, and to limit the necessity for use of high cost, non-standard parts.

Boundary dimensions standards include the bore diameter (d), outside diameter (D), width (B), assembly width (T) or height (H), and the chamfer dimension (r) of bearings.

Boundary dimensions are standardized by the International Organization for Standardization (ISO 15) and also Japanese Industrial Standard (JIS B 1512).

NACHI has adopted the ISO boundary dimension standards. <u>Figures 4.6</u> and <u>4.7</u> show the relationship of the dimensions for radial and thrust rolling contact bearings (except for Tapered roller bearings).

Table 4.1 Boundary Dimensions Terminolory

Series	Definition	Remarks
Diameter series	The diameter series is a series of standard outside diameters with standard bore diameters. Several series of outside diameters are set in stages to the same bearing bore diameter. Diameter series are labeled by single digit numbers 7, 8, 9, 0, 1, 2, 3, and 4.	Diameter series is in ascending order by diameter size with number 7 the smallest and 4 the largest. Each radial bearing diameter series has width series with numbers 8, 0, 1, 2, 3, 4, 5 and 6. Number 8 is the minimum width to the same bore and outside diameter. Number 6 is the maximum width Each thrust bearing diameter series has width series with number 7, 9, 1 and 2. Number 7 is the minimum width to the same bore and outside diameter. Number 2 is the maximum width
Width or Height series	Width or height series is a series of standard widths or heights with the same bore diameter within the same diameter series of bearings. These width or height series are labeled with single digit numbers. Width series 8, 0, 1, 2, 3, 4, 5, and 6 for radial bearings and height series 7, 9, 1, and 2 are for thrust bearings.	
Dimension series	Dimension series = width or height series number + Diameter series. Dimension series are labeled with a two digit number by combining numbers for the width or height series to the numbers for the diameter series. The two digit number has the width or height series in the lead position.	

Main Menu

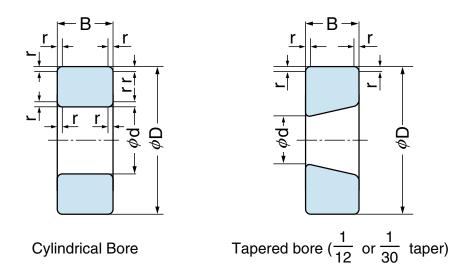


Fig 4.1 Radial Bearings (except Tapered Roller Baerings)

Fig 4.2 Tapered Roller Bearings

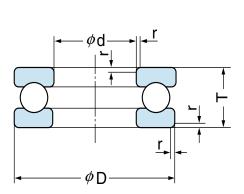


Fig 4.3 Single-direction Thrust Ball Bearings

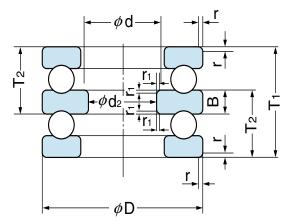


Fig 4.4

Double-direction Thrust Ball Bearings

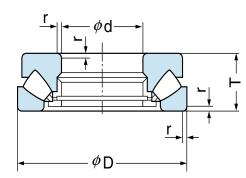


Fig 4.5 Spherical Roller Thrust Bearings

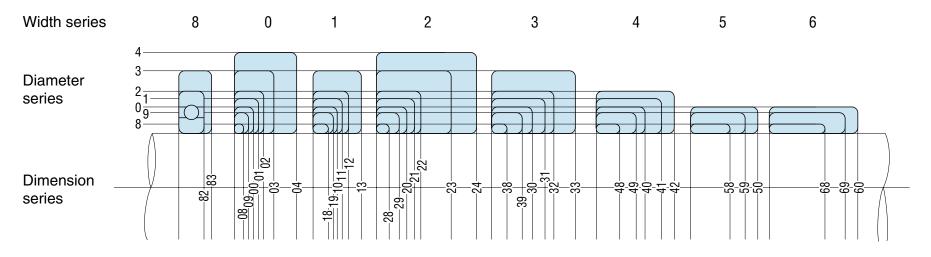


Fig 4.6 Graphical Representation of the Dimension series of Radial Bearings (except Tapered Roller Bearings)

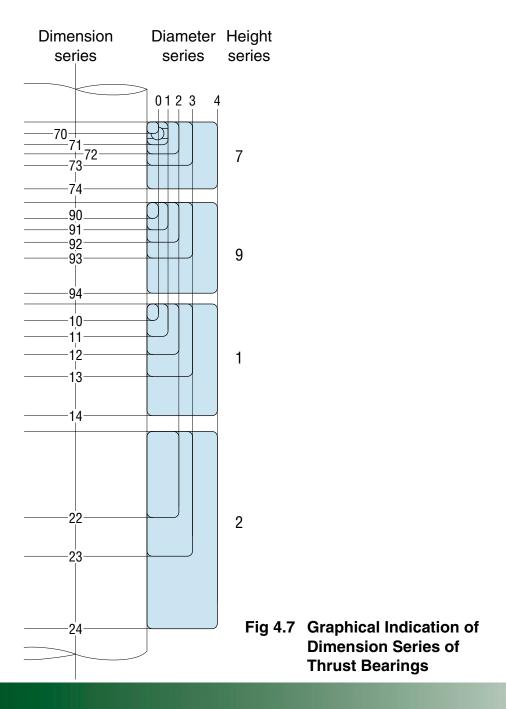


Table 4.2.1 Boundary Dimensions of Diameter Series 7, 8

(1/8)

Unit: mm

Single row, radial ball bear	rings		67						68							
Double row, radial ball bea	ırings															
Cylindrical roller bearings																
Spherical roller bearings																
			Diar	nete	r ser	ies 7				Diame	ter ser	ies 8	3	1		
Danis a k			Wid	th se	eries		40			Widt	h serie	es			1	mfer
Bearing be diameter	ore	outside r D	1	2	3	dimension	outside r D	0	1	2	3	4	5	6	dime	ension
Nominal		D off	D	ime	nsior	series	o off			Di	mensi	on se	eries			
		Bearing c diameter	17	27	37	17 ≀ 37	Bearing c diameter	08	18	28	38	48	58	68	08	18 ≀ 68
Bore No.	d	<u>₽</u>		<i>r</i>			ō. œ				<i>"</i>				_	
			V\	/idth	В	r _{min}				V	Vidth B				1	min
/0.6	0.6 1	2.5	0.8 1	_	_	0.05 0.05	2.5 3	_	1	_	1.4 1.5	_	_	_	_	0.05 0.05
/1.5	1.5	3	1	_	1.8	0.05	4	_	1.2	_	2	_	_	_	_	0.05
2	2	4	1.2	_	2	0.05	5	_	1.5	_	2.3	_	_	_	_	0.08
/2.5 3	2.5 3	5 6	1.5 2	_ 2.5	2.3	0.08 0.08	6 7	_	1.8 2	_	2.6 3	_	_	_	-	0.08
-	<u> </u>	-														
4 5	4 5	7 8	2	2.5 2.5	3 3	0.08 0.08	9 11	_	2.5 3	3.5 4	4 5	_	_	_	-	0.1 0.15
6	6	10	2.5	3	3.5	0.1	13	_	3.5	5	6	_	_	_	_	0.15
7	7	11	2.5	3	3.5	0.1	14	_	3.5	5	6	_	_	_	_	0.15
8 9	8 9	12 14	2.5	_	3.5 4.5	0.1 0.1	16 17	_	4 4	5 5	6 6	8 8	_	_	_	0.2
9	9	14	J		4.5	0.1	17	_	4	<u> </u>	Ö	0			_	0.2

Remarks: 1. I'min is the smallest chamfer dimension.
2. The chamfer dimensions given in this table do not necessarily apply to:

- (3) the front face side of angular contact bearing
- (1) the groove side of bearing rings with snap ring groove(2) the flangeless side of thin cylindrical roller bearing rings
- (4) inner rings of bearings with tapered bore

(2/8)

Unit: mm

	67						68							
	Diar	nete	r ser	ies 7				Diame	ter se	ies 8	3			
	Wid	lth se	eries		45			Wid	th serie	es			Cha	
side	1	2	3	dimension	side	0	1	2	3	4	5	6	dime	ension
D Str		ime	nsior	series	o off			D	imensi	on se	eries			
earing a	17	27	37	17 ≀	earing a	08	18	28	38	48	58	68	08	18 ~ 68
g g	L.	<i>r</i> .111.			g g				(f. du). D				-	
	V	/idth		I min				V	viath B	i			l l	min
15	3	_		0.1	19	_	5	6	7	9	_	_	_	0.3 0.3
21	4	<u> </u>	5	0.2	24	_	5	6	7	9	_	_	_	0.3
23	4	_	5	0.2	26	_	5	6	7	9	_	_	_	0.3
27	4	_	5	0.2										0.3 0.3
	_			_		4			10		10		0.3	0.5
32	4	-	5	0.2	37	4	7	8	10	12	16	22	0.3	0.3
37	4	_	5	0.2	40	4	7	8	10	_ 12	16	22 22	0.3	0.3 0.3
_	_	_	_	_	44	4	7	_	10	_	16	22	0.3	0.3
_	 -	_ _	_ _	- -	47 52	4 4	7 7	8 8	10 10	12 12	16 16	22 22	0.3	0.3 0.3
	18 21 23 27 - 32 -	Diar Wide 1	Diamete Width se 1 2 Dime 17 27 Width 15 3 - 18 4 - 21 4 - 23 4 - 27 4 - 32 4 - 32 4 - 32 4 - 32 4 - 32 4 - 32 4 - 32 4 - 32 4 - 32 4 - 32 4 - 32 4 - 32 4 -	Diameter ser Width series 1 2 3 Dimension 17 27 37 Width B 15 3 - 4.5 18 4 - 5 21 4 - 5 23 4 - 5 27 4 - 5 32 4 - 5 32 4 - 5	Diameter series 7 Width series Chamfer dimension	Diameter series 7 Width series Chamfer dimension	Diameter series 7 Width series Chamfer dimension Dimension series	Diameter series 7 Width series Chamfer dimension Dimension series	Diameter series 7 Diameter series 7 Diameter series 7 Diameter series 7 Diameter series 7 Diameter series 7 Diameter series 7 Diameter series 7 Diameter series 7 Diameter series 9 Diame	Diameter series 7	Diameter series 7 Diameter series 8	Diameter series 7	Diameter series 7 Width series Chamfer dimension Dimension series Dimension seri	Diameter series 7

Remarks: 1. I'min is the smallest chamfer dimension.
2. The chamfer dimensions given in this table do not necessarily apply to:

(3) the front face side of angular contact bearing

(1) the groove side of bearing rings with snap ring groove(2) the flangeless side of thin cylindrical roller bearing rings

Table 4.2.1 Boundary Dimensions of Diameter Series 7, 8

(3/8)

Unit: mm

Single row, radial ball bearings															
Single row, radial ball bearings		67						68							
Double row, radial ball bearings															
Cylindrical roller bearings															
Spherical roller bearings															
		Diar	nete	r ser	ies 7				Diame	ter ser	ies 8	3			
		Wid	lth se	eries	Chamfer				Widt	th serie	es			Cha	mfer
Bearing bore diameter	ide	1	2	3	dimension	ide	0	1	2	3	4	5	6	dime	ension
Nominal	outside r D	D	ime	nsior	series	outs D			Di	imensi	on se	eries			
	Bearing c diameter	17	27	37	17 ~	Bearing outside diameter D	08	18	28	38	48	58	68	08	18
Bore No. d	Be ië				37	B di di									68
20101101		V	V idth	В	r min				٧	Vidth B				r	min
09 45 10 50	<u>-</u>	_ _	_	_	- -	58 65	4 5	7 7	8 10	10 12	13 15	18 20	23 27	0.3 0.3	0.3 0.3
11 55	_	_	_	_	-	72	7	9	11	13	17	23	30	0.3	0.3
12 60	_	_	_	_	-	78	7	10	12	14	18	24	32	0.3	0.3
13 65 14 70	_	_ _	_ _	-	-	85 90	7 8	10 10	13 13	15 15	20 20	27 27	36 36	0.3	0.6 0.6
15 75	_	_	_	_	_	95	8	10	13	15	20	27	36	0.3	0.6
16 80 17 85	_	_	_	_	-	100 110	8 9	10 13	13 16	15 19	20 25	27 34	36 45	0.3	0.6
															•
18 90 19 95	_	_	_	_	_	115 120	9	13 13	16 16	19 19	25 25	34 34	45 45	0.3	1
20 100	_	-	_	_	_	125	9	13	16	19	25	34	45	0.3	1

Remarks: 1. I'min is the smallest chamfer dimension.
2. The chamfer dimensions given in this table do not necessarily apply to:

(3) the front face side of angular contact bearing

(1) the groove side of bearing rings with snap ring groove(2) the flangeless side of thin cylindrical roller bearing rings

Table 4.2.1 Boundary Dimen	sions of	Diamete	er Series 7	', 8
Single row radial hall hearings	0.7			

(4/8)

Unit: mm

Single row, radial ball bearings		67						68							
Double row, radial ball bearings															
Cylindrical roller bearings															
Spherical roller bearings															
		Diar	nete	r ser	ies 7				Diame	ter se	ries 8	3			
		Wic	lth se	eries	Chamfer				Wid	th serie	es			Chai	
Bearing bore diameter	outside r D	1	2	3	dimension	ide	0	1	2	3	4	5	6	dime	ension
Nominal)ime	nsior	n series	D off			D	imensi	on se	eries			
	Bearing c diameter	17	27	37	17 ≀ 37	Bearing outside diameter D	08	18	28	38	48	58	68	08	18 ~ 68
Bore No. d		٧	/idth	В	r min				V	Vidth E	<u> </u>			r	min
21 105 22 110 24 120	- - -	 - -	- - -		- - -	130 140 150	9 10 10	13 16 16	16 19 19	19 23 23	25 30 30	34 40 40	45 54 54	0.3 0.6 0.6	1 1 1
26 130 28 140 30 150	- - -	 - -	- - -		- - -	165 175 190	11 11 13	18 18 20	22 22 24	26 26 30	35 35 40	46 46 54	63 63 71	0.6 0.6 0.6	1.1 1.1 1.1
32 160 34 170 36 180	- - -	_ _ _	- - -	-	- - -	200 215 225	13 14 14	20 22 22	24 27 27	30 34 34	40 45 45	54 60 60	71 80 80	0.6 0.6 0.6	1.1 1.1 1.1
38 190 40 200 44 220	_ _ _	- - -	_ _ _	_ _ _	- - -	240 250 270	16 16 16	24 24 24	30 30 30	37 37 37	50 50 50	67 67 67	90 90 90	1 1 1	1.5 1.5 1.5

Remarks: 1. I'min is the smallest chamfer dimension.
2. The chamfer dimensions given in this table do not necessarily apply to:

- (3) the front face side of angular contact bearing
- (1) the groove side of bearing rings with snap ring groove(2) the flangeless side of thin cylindrical roller bearing rings
- (4) inner rings of bearings with tapered bore

Table 4.2.1 Boundary Dimensions of Diameter Series 7, 8	
---	--

(5/8)

Unit: mm

0: 1 " " " "															
Single row, radial ball bearings		67						68							
Double row, radial ball bearings															
Cylindrical roller bearings															
Spherical roller bearings															
		Diar	nete	r ser	ies 7				Diame	ter ser	ies 8	3			
		Wid	lth se	eries	Chamfer				Widt	th serie	es			Cha	mfer
Bearing bore diameter	ide	1	2	3	dimension	ide	0	1	2	3	4	5	6		ension
Nominal	outside r D		ime	nsior	series	outside r D			Di	imensi	on se	eries			
	Bearing c	17	27	37	17 ≀	Bearing c diameter	08	18	28	38	48	58	68	08	18
Bore No. d	Be is				37	Be dis									68
20,0,1,0,		V	/idth	В	r min				٧	Vidth B	,			r	min
48 240 52 260 56 280	- - -	- - -	- - -	- -	- - -	300 320 350	19 19 22	28 28 33	36 36 42	45 45 52	60 60 69	80 80 95	109 109 125	1 1 1.1	2 2 2
60 300 64 320 68 340		- - -	- - -	_ _ _	- - -	380 400 420	25 25 25	38 38 38	48 48 48	60 60 60	80 80 80	109 109 109	145 145 145	1.5 1.5 1.5	2.1 2.1 2.1
72 360 76 380 80 400	_ _ _	_ _ _	_ _ _		- - -	440 480 500	25 31 31	38 46 46	48 60 60	60 75 75	80 100 100	109 136 136	145 180 180	1.5 2 2	2.1 2.1 2.1
84 420 88 440 92 460	- - -	- - -	- - -	_ _ _	- - -	520 540 580	31 31 37	46 46 56	60 60 72	75 75 90	100 100 118	136 136 160	180 180 218	2 2 2.1	2.1 2.1 3

Remarks: 1. I'min is the smallest chamfer dimension.
2. The chamfer dimensions given in this table do not necessarily apply to:

(3) the front face side of angular contact bearing

(1) the groove side of bearing rings with snap ring groove(2) the flangeless side of thin cylindrical roller bearing rings

Table 4.2.1 Boundary Dimer	nsion	s of	Diar	nete	r Series 7	', 8			(6/8)				Unit	mm
Single row, radial ball bearings		67						68							
Double row, radial ball bearings															
Cylindrical roller bearings															
Spherical roller bearings															
		Diar	nete	r ser	ies 7				Diame	ter se	ries 8	3			
		Wid	lth se	eries	Chamfer	_			Widt	th seri	es			Char	nfer
Bearing bore diameter	utside D	1	2	3	dimension	ide	0	1	2	3	4	5	6	dime	nsion
Nominal	outs D		ime	nsior	series	outside r D			Di	imensi	on se	eries			
	Bearing o	17	27	37	17 ≀	Bearing d	08	18	28	38	48	58	68	08	18 ≀
Bore No. d	Be				37	Be. dia									68
Dole No. u		V	/idth	В	r min				٧	Vidth E	3		•	r r	nin

118 160 218 2.1 3

118 160 218 2.1 3

118 160 218 2.1

128 175 236

150 200 272

150 200 272

160 218 290

170 230 308

180 243 325

180 243 325

190 258 345

Remarks: 1. I'min is the smallest chamfer dimension.

/500

/530

/560

/600

/630

/670

/710

/750

/800

/850

/900

2. The chamfer dimensions given in this table do not necessarily apply to:

(1) the groove side of bearing rings with snap ring groove

(3) the front face side of angular contact bearing

(2) the flangeless side of thin cylindrical roller bearing rings

Table 4.2.1 Boundary Dimer	nsion	s of	Diar	nete	r Series 7	', 8			(7/8	3)				Unit	: mm
Single row, radial ball bearings		67						68							
Double row, radial ball bearings															
Cylindrical roller bearings															
Spherical roller bearings															
		Diar	nete	r ser	ies 7				Diame	eter se	ries 8	3			
		Wic	lth s	eries	Chamfer	_			Wid	th seri	es			Chai	mfer
Bearing bore diameter	ide	1	2	3	dimension	ide	0	1	2	3	4	5	6	dime	ension
Nominal	outside · D		Dime	nsior	series	outside · D			D	imensi	on se	eries	•		
	aring meter	17	27	37	17	Bearing c diameter	08	18	28	38	48	58	68	08	18
Bore No. d	Be				37	Be dia									68
Dole No. a		٧	Vidth	В	r _{min}				V	Vidth E	3			rı	min
/950 950	_	_	_	_	_	1150	63	90	118	150	200	272	355	5	5
/1000 1000 /1060 1060	- -	 -	_ _	_ _	_ _	1220 1280	71 71	100 100	128 128	165 165	218 218	300 300		1	6 6
/1120 1120	_	_	_	_	_	1360	78	106	140	180	243	325	438	5	6

1420

1500

1600

1700

1820

78 106

80 112

88 122

- 140

95 132

140

145

165

175

185

Remarks: 1. I'min is the smallest chamfer dimension.

/1180

/1250

/1320

/1400

/1500

1180

1250

1320

1400

1500

2. The chamfer dimensions given in this table do not necessarily apply to:

- (1) the groove side of bearing rings with snap ring groove
- (2) the flangeless side of thin cylindrical roller bearing rings
- (3) the front face side of angular contact bearing

180

185

206

224

243

243 325 438

250 335 450

280 375 500

400 545

300

315

6

6

6

7.5

7.5

6

6

Single row, radial ball bearings		67						68							
Double row, radial ball bearings															
Cylindrical roller bearings															
Spherical roller bearings															
		Diar	nete	r ser	ies 7			•	Diame	eter se	ries 8	3			
5		Wid	th se	eries	Chamfer				Wid	th seri	es			Cha	mfer
Bearing bore diameter	ide	1	2	3	dimension	ide	0	1	2	3	4	5	6	dime	ension
Nominal	outside · D		ime	nsior	series	outside r D			D	imens	ion se	eries			
	Bearing of diameter	17	27	37	17 ≀	Bearing d diameter	08	18	28	38	48	58	68	08	18 ~
Bore No. d	Be les				37	Be dia									68
Dole No. u		٧	/idth	В	r min				V	Vidth E	3			r	min
/1600 1600 /1700 1700 /1800 1800		_ _ _	_ _ _			1950 2060 2180	- - -	155 160 165	200 206 218	265 272 290	345 355 375	- - -	- - -	_ _ _	7.5 7.5 9.5
/1900 1900 /2000 2000	_ _	_ _	<u>-</u>	- -	- -	2300 2430	_ _	175 190	230 250	300 325	400 425	<u>-</u>	<u>-</u>	_ _	9.5 9.5

- Remarks: 1. I'min is the smallest chamfer dimension.
 2. The chamfer dimensions given in this table do not necessarily apply to:
 - (1) the groove side of bearing rings with snap ring groove
 - (2) the flangeless side of thin cylindrical roller bearing rings
- (3) the front face side of angular contact bearing
- (4) inner rings of bearings with tapered bore

69 79

(1/8)

60 70

N10

160

				Unit	: mm	1
	NN30					- -
	230	240				
Υ	neter s	eries	0			
t	th seri	es			Cha	mfer
	3	4	5	6		ension
)	imens	ion s	eries	3	•	
						10
	30	40	50	60	00	₹

Spherical roller bearings					239											230	240						
	Diameter series 9											Diameter series 0											
			Width series Chamfer								Width series							Cha	amfer				
Bearing bore diameter	jide	0	1	2	3	4	5	6	di	mens	ion	ide	0	1	2	3	4	5	6	dimension			
Nominal					Dimer	nsior	seri	es							D	imens	ion s	eries	3				
	Bearing outside diameter D	09	19	29	39	49	59	69	09	19 ~ 39	49 ≀ 69	Bearing outside diameter D	00	10	20	30	40	50	60	00	10 ≀ 60		
Bore No. d	a i i i i i i i i i i i i i i i i i i i											Ğ Ğ											
				Wi	idth B					r min					W	/idth B				<u>r</u>	min		
/0.6 0.6		-	_	_	_	_	_	-	_	_	-	_	_	_	_	_	_	_	-	_	-		
1 1 /1.5 1.5	5	_	1.6 2	_	2.3 2.6	_	_	_	_	0.1 0.15	_	6	_	2.5	_	3	_	_	_	_	_ 0.15		
2 2	6 7	_	2.3	_	3	_	_	_	_	0.15		7	_	2.8	_	3.5	_	_	_	_	0.15		
/2.5 2.5 3 3	7 8	-	2.5 3	_	3.5	_	_	-	-	0.15 0.15	_	8 9	_	2.8 3	_	4 5	_	_	-	_	0.15 0.15		
3 3	, °		<u> </u>	_	4	_			_	0.15	_	9	_	<u> </u>		<u> </u>					0.15		
4 4	11	_	4	_	5	_ 10	_	_	-	0.15		12	_	4	_	6	_	_	-	-	0.2		
5 5 6 6	13 15	_	4 5	_	6 7	10 10	_	_	_	0.2 0.2	0.15 0.15	14 17	_	5 6	_	9	_	_	_	_	0.2 0.3		
7 7	17	_	5	_	7	10	_	_	_	0.3	0.15		_	6	8	10	_	_	_	_	0.3		
8 8 9 9	19 20	_	6 6	_	9 9	11 11	_	_	_	0.3	0.2	22 24	_	7 7	9 10	11 12	14 15	19 20	25 27	_	0.3 0.3		
9	20	_	U	_	9	1.1	_	_	_	0.5	0.5		_	,	10	12	13	20	۲,	_	0.0		

NN49

Remarks: 1. I'min is the smallest chamfer dimension.

2. The chamfer dimensions given in this table do not necessarily apply to:

(3) the front face side of angular contact bearing

(1) the groove side of bearing rings with snap ring groove(2) the flangeless side of thin cylindrical roller bearing rings

(4) inner rings of bearings with tapered bore

Single row, radial ball bearings

Double row, radial ball bearings

Cylindrical roller bearings

(2/8)

Unit: mm

Single row, radial ball bearings			69 79										160	60 70							
Double row, radial ball bearings																					
Cylindrical roller bearings						NN49								N10		NN30					
Spherical roller bearings					239											230	240				
				Dia	amete	r serie	es 9				ı				Dian	neter s	eries	0			
Daniin a kana				Width	n serie	es			Cl	namfe	er	4			Wid	th seri	es			Chamfer	
Bearing bore diameter	outside r D	0	1	2	3	4	5	6	di	mens	ion	outside r D	0 1 2 3 4 5							dim	ensio
Nominal	onts	Dimension series										r outs	Dimension series								
	Bearing o diameter	09	19	29	39	49	59	69	09	19 ≀ 39	49 ≀ 69	Bearing diameter	00	10	20	30	40	50	60	00	10 ≀ 60
Bore No. d	ШО	Width B rmin									Width B								rmin		
00 10 01 12 02 15	22 24 28	_ _ _	6 6 7	8 8 8.5	10 10 10	13 13 13	16 16 18	22 22 23	_ _ _	0.3 0.3 0.3	0.3 0.3 0.3	26 28 32	- 7 8	8 8 9	10 10 11	12 12 13	16 16 17	21 21 23		- 0.3 0.3	0.3 0.3 0.3
03 17 04 20 /22 22	30 37 39	- 7 7	7 9 9	8.5 11 11	10 13 13	13 17 17	18 23 23	23 30 30		0.3 0.3 0.3	0.3 0.3 0.3	35 42 44	8 8 8	10 12 12	12 14 14	14 16 16	18 22 22	24 30 30	40	0.3	0.3 0.6 0.6
05 25 /28 28 06 30	42 45 47	7 7 7	9 9 9	11 11 11	13 13 13	17 17 17	23 23 23	30 30 30	0.3	0.3 0.3 0.3	0.3 0.3 0.3	47 52 55	8 8 9	12 12 13	14 15 16	16 18 19	22 24 25	30 32 34	43		0.6 0.6 1
/32 32 07 35 08 40	52 55 62	7 7 8	10 10 12	13 13 14	15 15 16	20 20 22	27 27 30	36 36 40	0.3	0.6 0.6 0.6	0.6 0.6 0.6	58 62 68	9 9 9	13 14 15	16 17 18	20 20 21	26 27 28	35 36 38	47 48 50	0.3	1

Remarks: 1. I'min is the smallest chamfer dimension.
2. The chamfer dimensions given in this table do not necessarily apply to:

(3) the front face side of angular contact bearing

(1) the groove side of bearing rings with snap ring groove(2) the flangeless side of thin cylindrical roller bearing rings

(3/8)

Unit: mm

		69 79										160	60 70								
													70_								
					NN49								N10		NN30						
				239											230	240					
			Dia	amete	r serie	es 9		<u> </u>						Dian	neter s	eries	0				
-			Widt	h serie	es			Cl	namfe	er	4.			Wid	th seri	es			Cha	mfer	
side	0	1	2	3	4	5	6	di	mens	ion	side	0	1	2	3	4	5	6	dime	ensio	
onts:	Dimension series									ont.			D	Dimension series							
Searing liameter	09	19	29	39	49	59	69	09	19 ≀ 39	49	searing diameter	00	10	20	30	40	50	60	00	10 60	
шО			Wi	dth B					r min					V	l /idth B	}			r	min	
68 72 80	8 8 9	12 12 13	14 14 16	16 16 19	22 22 25	30 30 34	40 40 45	0.3	0.6	0.6 0.6 1	75 80 90	10 10 11	16 16 18	19 19 22	23 23 26	30 30 35	40 40 46	54	0.6	1	
85 90 100	9 9 10	13 13 16	16 16 19	19 19 23	25 25 30	34 34 40	45 45 54	0.3	1	1 1 1	95 100 110	11 11 13	18 18 20	22 22 24	26 26 30	35 35 40	46 46 54			1.1	
105 110 120	10 10 11	16 16 18	19 19 22	23 23 26	30 30 35	40 40 46	54 54 63	0.6	1	1 1 1.1	115 125 130	13 14 14	20 22 22	24 27 27	30 34 34	40 45 45	54 60 60			1.1	
125 130 140	11 11 13	18 18 20	22 22 24	26 26 30	35 35 40	46 46 54	63 63 71	0.6 0.6 0.6	1.1 1.1 1.1	1.1 1.1 1.1	140 145 150	16 16 16	24 24 24	30 30 30	37 37 37	50 50 50	67 67 67			1.5 1.5 1.5	
	85 90 100 105 110 125 130	68 8 72 8 80 9 9 100 10 10 11 120 11 125 11 130 11	0 1 Bearing ontside 0 1	Dia Widtl O 1 2 Wight O 1 1 2 Wight O 1 1 2 O 1 1 1 2 O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Part	T9	## Diameter series 9 ## Diameter series 9 ## Width series ## O	79	79	T9	The late The late	T9	NN49 NN49	The late	NN49	Note Note	N10	Note Note	NN49	NN49	

Remarks: 1. I'min is the smallest chamfer dimension.
2. The chamfer dimensions given in this table do not necessarily apply to:

(3) the front face side of angular contact bearing

(1) the groove side of bearing rings with snap ring groove(2) the flangeless side of thin cylindrical roller bearing rings

(4/8)

Unit: mm

Single row, radial ball bearings			69										160	60 70								
Double row, radial ball bearings			79										100	_70_								
Cylindrical roller bearings						NN49								N10		NN30						
Spherical roller bearings					239												240					
	l	Diameter series 9											Diameter series 0									
Daniin a kana				Widt	h serie	s			CI	namfe	er				Wid	th seri	es			Cha	amfer	
Bearing bore diameter	outside r D	0	1	2	3	4	5	6	di	mens	ion	side	0	1	2	3	4	5	6	dim	ensio	
Nominal	outs	Dimension series										outs D			D	imens	ion s	eries	3			
	Bearing ou diameter D	09	19	29	39	49	59	69	09	19 ≀ 39	49 ≀ 69	Bearing outside diameter D	00	10	20	30	40	50	60	00	10 ≀ 60	
Bore No. d	ШО			Wi	dth B					r min		ШО			V	/idth B				r	min	
21 105 22 110 24 120	145 150 165	13 13 14	20 20 22	24 24 27	30 30 34	40 40 45	54 54 60	71 71 80	0.6 0.6 0.6	1.1	1.1 1.1 1.1	160 170 180	18 19 19	26 28 28	33 36 36	41 45 46	56 60 60	80	100 109 109	1	2 2 2	
26 130 28 140 30 150	180 190 210	16 16 19	24 24 28	30 30 36	37 37 45	50 50 60	67 67 80	90 90 109	1 1 1	1.5 1.5 2	1.5 1.5 2	200 210 225	22 22 24	33 33 35	42 42 45	52 53 56	69 69 75		125 125 136	1.1	2	
32 160 34 170 36 180	220 230 250	19 19 22	28 28 33	36 36 42	45 45 52	60 60 69	80	109 109 125	1 1 1.1	2 2 2	2 2 2	240 260 280	25 28 31	38 42 46	48 54 60	60 67 74	90	122	145 160 180	1.5		
38 190 40 200 44 220	260 280 300	22 25 25	33 38 38	42 48 48	52 60 60	69 80 80	109		1.1 1.5 1.5		2 2.1 2.1	290 310 340	31 34 37	46 51 56	60 66 72	75 82 90	109	150	180 200 218	2	2.1 2.1 3	

Remarks: 1. I'min is the smallest chamfer dimension.
2. The chamfer dimensions given in this table do not necessarily apply to:

(3) the front face side of angular contact bearing

(1) the groove side of bearing rings with snap ring groove(2) the flangeless side of thin cylindrical roller bearing rings

Table 4.2.1 Boundary	/ Dimensions of	Diameter Series 9, 0
----------------------	-----------------	----------------------

(5/8)

Unit: mm

Single row, radial ball bearings			69 79										160	60 70								
Double row, radial ball bearings			70											- 7 0								
Cylindrical roller bearings						NN49								N10		NN30						
Spherical roller bearings					239											230	240					
		ı		Di	amete	r seri	es 9								Dian	neter s	eries	0		I .		
Danilan kana				Widt	h serie	es			Cl	namfe	er	4			Wid	th seri	es			Cha	amfer	
Bearing bore diameter	outside r D	0 1 2 3 4 5 6								mens	ion	outside r D	0	1	2	3	4	5	6	dimension		
Nominal	outs		Dimension series									ont.			D	imens	ion s	eries	5			
	earing amete	09	19	29	39	49	59	69	09	19 ≀ 39	49 ≀ 69	Bearing diameter	00	10	20	30	40	50	60	00	10 ≀ 60	
Bore No. d	g <u>B</u>			W	idth B					r min		Width B								rmin		
48 240 52 260 56 280	320 360 380	25 31 31	38 46 46	48 60 60	60 75 75	100	136	145 180 180	1.5 2 2	2.1 2.1 2.1	2.1 2.1 2.1	360 400 420	37 44 44	56 65 65		92 104 106	140	190	218 250 250	3	3 4 4	
60 300 64 320 68 340	420 440 460	37 37 37	56 56 56	72 72 72	90 90 90	118	160	218 218 218	2.1 2.1 2.1	3	3 3 3	460 480 520	50 50 57	74 74 82		118 121 133	160	218	290 290 325	4	4 4 5	
72 360 76 380 80 400	480 520 540	37 44 44	56 65 65	72 82 82	90 106 106	140	190	218 250 250	2.1 3 3	3 4 4	3 4 4	540 560 600	57 57 63	82 82 90	106 106 118	135	180	243	325 325 355	4	5 5 5	
84 420 88 440 92 460	560 600 620	44 50 50	65 74 74	82 95 95	106 118 118	140 160 160		290	3 4 4	4 4 4	4 4 4	620 650 680	63 67 71	90 94 100	118 122 128	157	212	280	355 375 400	5	5 6 6	

Remarks: 1. I'min is the smallest chamfer dimension.
2. The chamfer dimensions given in this table do not necessarily apply to:

(3) the front face side of angular contact bearing

(1) the groove side of bearing rings with snap ring groove(2) the flangeless side of thin cylindrical roller bearing rings

(6/8)

Unit: mm

Single row, radial ball bearings			69 79										160	60 70								
Double row, radial ball bearings																						
Cylindrical roller bearings						NN49								N10		NN30						
Spherical roller bearings					239											230	240					
		Diameter series 9																				
D				Widt	h serie	es			_	namfe		Width series								Cham		
Bearing bore diameter	outside r D	0 1 2 3 4 5 6 Dimension series								mens	ion	outside r D	0	1	2	3	4	5	6	dim	ensio	
Nominal	outs						off.				imens	sion s	eries	3								
	Bearing o diameter I	09	19	29	39	49	59	69	09	19 ≀ 39	49 ≀ 69	Bearing diameter	00	10	20	30	40	50	60	00	10 ≀ 60	
Bore No. d	g ib			W	idth B					rmin		ĕ Œ	Width B							r mir		
96 480 /500 500 /530 530	650 670 710	54 54 57	78 78 82	100 100 106	128 128 136	170	230 230 243	308	4 4 4	5 5 5	5 5 5	700 720 780	71	100 100 112	128	165 167 185	218	300	400 400 450	5	6 6 6	
/560 560 /600 600 /630 630	750 800 850	60 63 71	85 90 100	112 118 128	140 150 165	190 200 218		355	5 5 5	5 5 6	5 5 6	820 870 920	85	115 118 128	150 155 170	200	272	365	462 488 515	6	6 6 7.5	
/670 670 /710 710 /750 750	900 950 1000	78	103 106 112	136 140 145	170 180 185	230 243 250	325	438	5 5 6	6 6 6	6 6 6	980 1030 1090		140	185	230 236 250	315	438	560 580 615	6	7.5 7.5 7.5	
	1060 1120 1180	85	115 118 122	150 155 165	195 200 206	258 272 280	365	488	6 6 6	6 6 6	6 6 6	1150 1220 1280	118	165	200 212 218	272	365	500	630 670 690	7.5	7.5	

Remarks: 1. I'min is the smallest chamfer dimension.
2. The chamfer dimensions given in this table do not necessarily apply to:

(3) the front face side of angular contact bearing

(1) the groove side of bearing rings with snap ring groove(2) the flangeless side of thin cylindrical roller bearing rings

<u>e</u>

69 79

(7/8)

Chamfer

dimension

<u>e</u>

60 70

N10

160

				Unit	: mr	
	NN30					
	230	240				
Dian	neter s	eries	0			
Wid	th seri	es			Cha	ımfer
2	3	4	5	6	1	ension

	diameter)ic	U	l I	2	3	4	5	ь	ui	1116113	1011	l iš	U	I	2	3	4	ט	ь	UIITIE	CI 13101 I		
	Nominal	outsic D				Dime	nsior	ı seri	es				outsic r D		Dimension series									
-		Bearing o diameter	09	19	29	39	49	59	69	09	19	49	Bearing c	00	10	20	30	40	50	60	00	10		
	Bore No. d	Be dia			W	idth B					39 r _{min}		Be			V	/idth B				r r	60 min		
	/950 950 /1000 1000 /1060 1060	1250 1320 1400	103		175 185 195	224 236 250	315	400 438 462	580	6	7.5 7.5 7.5	7.5	1360 1420 1500	136	185	236 243 250	308	412 412 438		750	7.5	7.5		
	/1120 1120 /1180 1180 /1250 1250	1460 1540 1630	115	160	195 206 218	250 272 280	355	462 488 515	650	7.5	7.5	7.5	1580 1660 1750	155		265 272 290	355	462 475 500	650					
-	/1320 1320 /1400 1400 /1500 1500	1720 1820 1950	128 - -	175 185 195	230 243 258	300 315 335	400 425 450	545 - -	710 – –	7.5 - -	7.5 9.5 9.5	7.5 9.5 9.5	1850 1950 2120	_	230 243 272	300 315 355		530 545 615	_ _ _	- - -		12 12 12		

NN49

239

Width series

Diameter series 9

Remarks: 1. I'min is the smallest chamfer dimension.

2. The chamfer dimensions given in this table do not necessarily apply to:

- (1) the groove side of bearing rings with snap ring groove
- (3) the front face side of angular contact bearing
- (2) the flangeless side of thin cylindrical roller bearing rings
- (4) inner rings of bearings with tapered bore

Single row, radial ball bearings

Double row, radial ball bearings

Bearing bore

Cylindrical roller bearings

Spherical roller bearings

1 :1	_	
Init	•	mm
ノロロレ		mm

Single row, radial ball bearings			69 79										160	60 70										
Double row, radial ball bearings	5																							
Cylindrical roller bearings						NN49								N10		NN30								
Spherical roller bearings					239											230	240							
			Diameter series 9											Diameter series 0										
Des technic				Wid	er		Width series								amfer									
Bearing bore diameter	outside r D	0	1	2	3	4	5	6	di	mens	ion	outside r D	0	1	2	3	4	5	6	dim	ension			
Nominal	Duts				Dime	nsior	seri	es					Dimension series						3					
	Bearing o	09	19	29	39	49	59	69	09	19 ≀	49 ≀	Bearing o diameter l	00	10	20	30	40	50	60	00	10			
Bore No. d	Be _é									39	69	Be									60			
bore No. u				W	idth B					r mir	1				٧	vidth B				r	min			
/1600 1600 /1700 1700 /1800 1800	2060 2180 2300	_	200 212 218	265 280 290	345 355 375	462 475 500	_ _ _	_ _ _	 - -	9.5 9.5 12	9.5 9.5 12	2240 2360 2500	_	280 290 308	375	475 500 530	630 650 690	_ _ _	_ _ _	- '	12 15 15			
/1900 1900 /2000 2000	2430 –	_ _	230 –	308 -	400 –	530 –	<u>-</u>	<u>-</u>	_	12 -	12 -	_ _	_	<u>-</u>	<u>-</u>	<u>-</u>	_	<u>-</u>	_	_	_			

- Remarks: 1. I'min is the smallest chamfer dimension.
 2. The chamfer dimensions given in this table do not necessarily apply to:
 - (1) the groove side of bearing rings with snap ring groove
- (3) the front face side of angular contact bearing
- (2) the flangeless side of thin cylindrical roller bearing rings
- (4) inner rings of bearings with tapered bore

(1/8)

•						,				` '								
Single row, radial ball bearing	ngs											62 72						
Double row, radial ball bear	ings											12			32 52			
Cylindrical roller bearings												N2		N22	02			
Spherical roller bearings						231	241							222	232			
				Dia	meter	serie	s 1		ı			l	Diame	eter se	ries 2	1		
				Wic	dth se	ries		Char	nfer				Width	serie	S		Char	nfer
Bearing bo	ore	de	0	1	2	3	4	dime	nsion	ge	8	0	1	2	3	4	dime	nsion
diameter Nominal		outside r D			Dime	nsion	series	S		outside D			Di	mens	ion ser	ies		
		Bearing out diameter D	01	11	21	31	41	01	11 ≀	Bearing out diameter D	82	02	12	22	32	42	82	02
Bore No.	7	Be dia							41	Be dia								42
Dore No. C	J			V	Vidth	В		r n	nin				Wic	th B			r n	nin
/0.6	0.6	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
1	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
/1.5	1.5	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
	2	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	2.5	_	_	_	_	_	_	_	_	- 10	_ 2.5	- 4	_	_	_ 5	_	_ 0.1	_ 0.15
ა	ა 	<u>-</u>	_		_	_		_		10	2.5	4	_		<u> </u>		0.1	0.15
	4	_	_	_	_	_	_	_	_	13	3	5	_	_	7	_	0.15	0.2
	5 6	_	_	_	_	_	_	_	_	16 19	3.5 4	5 6	_	_	8 10	_	0.15 0.2	0.3 0.3
	7									22	5	7			11	_	0.3	0.3
	8	_	_	_	_	_	_	_	_	24	5	8	_	_	12	_	0.3	0.3

9

Remarks: 1. I'min is the smallest chamfer dimension.
2. The chamfer dimensions given in this table do not necessarily apply to:

(3) the front face side of angular contact bearing

13

0.3

0.3

26

(1) the groove side of bearing rings with snap ring groove(2) the flangeless side of thin cylindrical roller bearing rings

(4) inner rings of bearings with tapered bore

Table 4.2.2 Boundary D	Dimer	sions	of Dia	mete	r Seri	ies 1,	2			(2/8)							Ur	nit : mn
Single row, radial ball beari	ings											62 72						
Double row, radial ball bea	rings											12			32 52			
Cylindrical roller bearings												N2		N22	- 02			
Spherical roller bearings						231	241							222	232			
			Diameter series 1 Diameter series 2															
D		_		Wid	dth se	ries		Char	nfer				Width	serie	S		Char	mfer
Bearing b diameter	ore	ide	0	1	2	3	4	dime	nsion	ide	8	0	1	2	3	4	dime	ension
Nominal		outs D			Dime	nsion	serie	S		Duts			D	imens	ion seri	es		
		Bearing outside diameter D	01	11	21	31	41	01	11 ≀ 41	Bearing outside diameter D	82	02	12	22	32	42	82	02 ~ 42
Bore No.	d			\ \	Vidth	В		r n	nin				Wic	dth B			r r	min
01	10 12 15	- - -	- - -	- - -	- - -	- - -	- - -	_ _ _	- - -	30 32 35	7 7 8	9 10 11	- - -	14 14 14	14.3 15.9 15.9	_ _ 20	0.3 0.3 0.3	0.6 0.6 0.6
04	17 20 22		- - -	- - -	- - -	- - -	- - -	 - -	- - -	40 47 50	8 9 9	12 14 14	- - -	16 18 18	17.5 20.6 20.6	22 27 27	0.3 0.3 0.3	0.6 1 1
/28	25 28 30	- - -	- - -	- - -	- - -	- - -	- - -	_ _ _	- - -	52 58 62	10 10 10	15 16 16	- - -	18 19 20	20.6 23 23.8	27 30 32	0.3 0.6 0.6	1 1 1

32

35

40

Remarks: 1. I'min is the smallest chamfer dimension.
2. The chamfer dimensions given in this table do not necessarily apply to:

(3) the front face side of angular contact bearing

18

25

27

30.2

23

33

37

0.6

0.6

0.6

1.1

1.1

(1) the groove side of bearing rings with snap ring groove(2) the flangeless side of thin cylindrical roller bearing rings

(4) inner rings of bearings with tapered bore

65

72

80

11

12

13

/32

07

08

(3/8)

Unit: mm

Single row, radial ball b	earings											62 72							
Double row, radial ball I	pearings											12			32 52				
Cylindrical roller bearing	gs											N2		N22	- 02				
Spherical roller bearing	S					231	241							222	232				
					meter	serie	s 1		I	Diameter series 2									
D		_		Wic	dth se	ries		Char	nfer	_	Width series						Cha	amfer	
Bearir diame	g bore	gide	0	1	2	3	4	dime	nsion	jg j	8	0	1	2	3	4	dime	ension	
Nomin		outside r D			Dime	nsion	serie	S		outside r D			Di	mensi	ion seri	es			
		Bearing ou diameter D	01	11	21	31	41	01	11	Bearing out diameter D	82	02	12	22	32	42	82	02	
Bore No	b d	Be gig							41	B B B								42	
2010 140). u			V	Vidth	В		r n	nin				Wic	lth B			rı	min	
09 10 11	45 50 55	- - -	_ _ _	- - -	- - -	_ _ _	- - -	_ _ _	_ _ _	85 90 100	13 13 14	19 20 21	- - -	23 23 25	30.2 30.2 33.3	40 40 45	0.6 0.6 0.6	1.1 1.1 1.5	
12 13 14	60 65 70	- - -	- - -	_ _ _	_ _ _	_ _ _	- - -	_ _ _	_ _ _	110 120 125	16 18 18	22 23 24	- - -	28 31 31	36.5 38.1 39.7	50 56 56	1 1 1	1.5 1.5 1.5	
15 16 17	75 80 85	- - -	- - -	_ _ _	_ _ _	- - -	- - -	_ _ _	_ _ _	130 140 150	18 19 21	25 26 28	- - -	31 33 36	41.3 44.4 49.2	56 60 65	1 1 1.1	1.5 2 2	
18 19 20	90 95 100	150 160 165	- - 21	- - 30	- - 39	- - 52	60 65 65	- - 1.1	2 2 2	160 170 180	22 24 25	30 32 34	- -	40 43 46	52.4 55.6 60.3	69 75 80	1.1 1.1 1.5	2 2.1 2.1	

Remarks: 1. I'min is the smallest chamfer dimension.

2. The chamfer dimensions given in this table do not necessarily apply to:

(3) the front face side of angular contact bearing

(1) the groove side of bearing rings with snap ring groove(2) the flangeless side of thin cylindrical roller bearing rings

(4/8)

Unit : mm

72 Single row, radial ball bearings 52 Double row, radial ball bearings Cylindrical roller bearings N₂ **N22** Spherical roller bearings Diameter series 2 Diameter series 1 Width series Chamfer Width series Chamfer Bearing bore Bearing outside diameter D Bearing outside dimension dimension diameter Dimension series Dimension series Nominal diameter D l l Bore No. d Width B r_{min} Width B **r**min 1.5 1.1 65.1 2.1 69.8 1.5 2.1 1.1 1.5 2.1 1.5 1.5 2.1 2.1 2.1 2.1 2.1

Remarks: 1. I'min is the smallest chamfer dimension.

2. The chamfer dimensions given in this table do not necessarily apply to:

(1) the groove side of bearing rings with snap ring groove

(3) the front face side of angular contact bearing

- (2) the flangeless side of thin cylindrical roller bearing rings
- (4) inner rings of bearings with tapered bore

Table 4.2.2 Boundar	y Dimensions of Diameter Series 1,	, 2
----------------------------	------------------------------------	-----

Single row, radial ball bearings

Double row, radial ball bearings

Cylindrical roller bearings

Spherical roller bearings

(5/8)Unit: mm 62 72 32 52 12 N22 N2 231 241 222 232

· -					_									_			
			Dia	meter	serie	s 1					[Diame	eter se	eries 2			
D			Wic	dth se	ries		Char				1	Width	serie	S		Char	
Bearing bore diameter	side	0	1	2	3	4	dime	nsion	side	8	0	1	2	3	4	dime	ension
Nominal	outside r D			Dime	nsion	series	3		outside r D			Di	mens	ion ser	ies		
								11	Bearing o diameter l								02
	Bearing diamete	01	11	21	31	41	01	. ₹	arii ame	82	02	12	22	32	42	82	₹
Bore No. d	Be dia							41	Be dis								42
Bole 140. d			V	Vidth I	В		r n	nin				Wic	lth B			r r	nin
48 240	400	50	74	95	128	160	4	4	440	_	72	85	120	160	200	_	4
52 260	440	57	82	106	144	180	4	4	480	_	80	90	130	174	218	_	5 5
56 280	460	57	82	106	146	180	4	5	500	_	80	90	130	176	218	_	5
60 300	500	63	90	118	160	200	5	5	540	_	85	98	140	192	243	_	5
64 320	540	71	100	128	176	218	5	5	580	_	92	105	150	208	258	_	5
68 340	580	78	106	140	190	243	5	5	620	_	92	118	165	224	280	_	6
72 360	600	78	106	140	192	243	5	5	650	_	95	122	170	232	290	_	6
76 380	620	78	106	140	194	243	5	5	680	_	95	132	175	240	300	_	6
80 400	650	80	112	145	200	250	6	6	720	_	103	140	185	256	315	_	6
84 420	700	88	122	165	224	280	6	6	760	_	109	150	195	272	335	_	7.5
88 440	720	88	122	165	226	280	6	6	790	_	112	155	200	280	345	_	7.5
92 460	760	95	132	175	240	300	6	7.5	830	_	118	165	212	296	365	_	7.5

Remarks: 1. I'min is the smallest chamfer dimension.

2. The chamfer dimensions given in this table do not necessarily apply to:

(3) the front face side of angular contact bearing

(1) the groove side of bearing rings with snap ring groove(2) the flangeless side of thin cylindrical roller bearing rings

Table 4.2.2 Boundar	y Dimensions of Diameter Series 1,	, 2
----------------------------	------------------------------------	-----

(6/8)

72 Single row, radial ball bearings 52 Double row, radial ball bearings Cylindrical roller bearings N₂ **N22** Spherical roller bearings Diameter series 1 Diameter series 2 Width series Chamfer Width series Chamfer outside Bearing bore outside dimension dimension diameter Bearing outs diameter D Dimension series Dimension series Nominal diameter D Bearing l l Bore No. d Width B **r**min Width B $\mathbf{r}_{\mathsf{min}}$ 7.5 7.5 7.5 7.5 7.5 /500 /530 7.5 9.5 7.5 /560 7.5 7.5 9.5 /600 7.5 7.5 9.5 7.5 7.5 /630 /670 7.5 7.5 /710 9.5 9.5

Remarks: 1. I'min is the smallest chamfer dimension.

2. The chamfer dimensions given in this table do not necessarily apply to:

9.5

9.5

9.5

9.5

(1) the groove side of bearing rings with snap ring groove

(3) the front face side of angular contact bearing

(2) the flangeless side of thin cylindrical roller bearing rings

(4) inner rings of bearings with tapered bore

Unit: mm

/750

/800

/850

/900

Unit: mm

Single row, radial ball bearings											62 72						
Double row, radial ball bearings											12			32 52			
Cylindrical roller bearings											N2		N22				
Spherical roller bearings					231	241							222	232			
			Dia	meter	serie	s 1						Diame	eter se	ries 2			
		Width series Chamfer V							Width	serie	S			mfer			
Bearing bore diameter	outside r D	0	1	2	3	4	dime	ension	outside r D	8	0	1	2	3	4	dime	ension
Nominal				Dime	nsion	serie	S					Di	mens	ion ser	ies		
	Bearing out diameter D	01	11	21	31	41	01	11 ≀ 41	Bearing c diameter	82	02	12	22	32	42	82	02 ~ 42
Bore No. d	ВΘ		V	 Vidth	 В		r	 min	ВΘ			Wic	lth B			r	l min
/950 950 /1000 1000 /1060 1060	1500 1580 1660	175 185 190	243 258 265	315 335 345	438 462 475	545 580 600	12 12 12	12 12 15	1660 1750 –	_ _ _ _	230 243 –	315 330 –	412 425 –	530 560 –	710 750 –	_ _ _	15 15 —
/1120 1120 /1180 1180 /1250 1250	1750 1850 1950	- - -	280 290 308	365 388 400	475 500 530	630 670 710	_ _ _	15 15 15	- - -	- - -	- - -	- - -	- - -	- - -	- - -	_ _ _	- - -
/1320 1320 /1400 1400 /1500 1500	2060 2180 2300	- - -	325 345 355	425 450 462	560 580 600	750 775 800	_ _ _	15 19 19	- - -	- - -	- - -	- - -	- - -	- - -	- - -	_ _ _	- - -

Remarks: 1. I'min is the smallest chamfer dimension.

2. The chamfer dimensions given in this table do not necessarily apply to:

(1) the groove side of bearing rings with snap ring groove

(3) the front face side of angular contact bearing

(2) the flangeless side of thin cylindrical roller bearing rings

Unit: mm

Single row, radial ball bearings											62 72						
Double row, radial ball bearings											12			32 52			
Cylindrical roller bearings											N2		N22				
Spherical roller bearings					231	241							222	232			
			Diar	meter	serie	s 1					ĺ	Diame	eter se	eries 2			
5			Wic	dth se	ries		Char	nfer				Width	serie	S		Char	
Bearing bore diameter	outside r D	0	1	2	3	4	dime	nsion	outside r D	8	0	1	2	3	4	dime	ension
Nominal	outs D			Dime	nsion	series	S		outs D			D	imens	ion seri	ies		
	Bearing o diameter l	01	11	21	31	41	01	11 ≀	Bearing c diameter	82	02	12	22	32	42	82	02
Davo Na - d	Bea dia							41	Bea dia								42
Bore No. d			V	Vidth	В		r n	nin				Wio	dth B			r r	nin
/1600 1600	-	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	-
/1700 1700	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
/1800 1800	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
/1900 1900 /2000 2000	_ _	_ _	_ _	_ _	_ _	_ _	_ _	- -	_ _	_ _	_	_ _	_ _	<u>-</u>	_		_ _

Remarks: 1. I'min is the smallest chamfer dimension.
2. The chamfer dimensions given in this table do not necessarily apply to:

- (1) the groove side of bearing rings with snap ring groove
- (3) the front face side of angular contact bearing
- (2) the flangeless side of thin cylindrical roller bearing rings (4) inner rings of bearings with tapered bore

Table 4.2.2 Boundary Dim	ensions	of Dia	amete	r Ser	ies 3,	4			(1/8)			Unit : mm
Single row, radial ball bearings			63 73									
Double row, radial ball bearing	3		13			33 53						
Cylindrical roller bearings			N3		N23					N4		
Spherical roller bearings			213		223							
		1	Dia	amete	r serie	es 3		I	Di	iamete	r series	s 4
ъ	_		W	idth s	eries		Char			Width	series	Chamfer
Bearing bore diameter	l eji	8	0	1	2	3	dime	ension	jide	0	2	dimension
Nominal	outside r D			Dim	ensior	series	3			Dir	nensio	n series
	Bearing ou	83	03	13	23	33	83	03	Bearing outside diameter D	04	24	04
Bore No. d	ĕ B							33	ĕ ë			24
				Width	ı B		r r	min		Wic	lth B	r min
/0.6 0.6	_	_	_	_	_	_	-	_	_	_	_	_
1 1 /1.5 1.5	_	_	_	_	_	_	_	_	_	_	_	_ _
2 2	_	_	_	_	_	_	_	_	_	_	_	_
/2.5 2.5 3 3	13	_	– 5	_	_	_ 7	_	_ 0.2	_	_	_	_
3 3	13						ļ -	0.2	_	_		_
4 4	16	-	5	_	_	9	-	0.3	_	_	_	_
5 5 6 6	19 22	_	6 7	_	11	10 13	_	0.3 0.3	_	_ _	_	

Remarks: 1. I'min is the smallest chamfer dimension.
2. The chamfer dimensions given in this table do not necessarily apply to:

- (3) the front face side of angular contact bearing
- (1) the groove side of bearing rings with snap ring groove(2) the flangeless side of thin cylindrical roller bearing rings
- (4) inner rings of bearings with tapered bore

0.6

0.6

0.3

0.3

0.6

Table 4.2.2 Boundary Dimen	sions (of Dia	amete	r Ser	ies 3,	4			(2/8)			Unit : mm
Single row, radial ball bearings			63 73									
Double row, radial ball bearings			13			33 53						
Cylindrical roller bearings			N3		N23					N4		
Spherical roller bearings			213		223							
			Dia	amete	r serie	es 3			D	amete	r series	s 4
			W	idth s	eries		Char			Width	series	Chamfer
Bearing bore diameter	ide	8	0	1	2	3	dime	nsion	ide	0	2	dimension
Nominal	outside r D		•	Dim	ensior	series	;		outside r D	Din	nensio	n series
	Bearing ou diameter D	83	03	13	23	33	83	03	Bearing c diameter	04	24	04
Dave No. d	Bea diar							33	Bea			24
Bore No. d				Width	В		r n	nin		Wid	th B	r min
00 10 01 12 02 15	35 37 42	9 9 9	11 12 13		17 17 17	19 19 19	0.3 0.3 0.3	0.6 1 1	37 42 52	12 13 15	16 19 24	0.6 1 1.1
03 17 04 20 /22 22	47 52 56	10 10 11	14 15 16	_ _ _	19 21 21	22.2 22.2 25	0.6 0.6 0.6	1 1.1 1.1	62 72 –	17 19 –	29 33 –	1.1 1.1 -

25.4

30.2

34.9

36.5

0.6

0.6

0.6

0.6

0.6

1.1

1.1

1.1

1.1

1.5

1.5

Remarks: 1. I'min is the smallest chamfer dimension.

/28

/32

2. The chamfer dimensions given in this table do not necessarily apply to:

- (1) the groove side of bearing rings with snap ring groove
- (3) the front face side of angular contact bearing
- (2) the flangeless side of thin cylindrical roller bearing rings
- (4) inner rings of bearings with tapered bore

1.5

1.5

1.5

(3/8)

Unit: mm

Single row, radial ball bearings			63									
			73									
Double row, radial ball bearings			13			33 53						
Cylindrical roller bearings			N3		N23					N4		
Spherical roller bearings			213		223							
			Dia	amete	r serie	es 3			Di	iamete	r series	s 4
			Wi	idth s	eries		Char	nfer		Width	series	Chamfer
Bearing bore diameter	ide	8	0	1	2	3	dime	nsion	ide	0	2	dimension
Nominal	outside r D			Dim	ensior	series	}		outside r D	Din	nensio	n series
	Bearing c diameter	83	03	13	23	33	83	03 , 33	Bearing c diameter	04	24	04 ≀ 24
Bore No. d	ğ. Ş								g ig			
				Width	В		r n	nin		Wid	th B	r _{min}
09 45 10 50 11 55	100 110 120	17 19 21	25 27 29	- - -	36 40 43	39.7 44.4 49.2	1 1 1.1	1.5 2 2	120 130 140	29 31 33	50 53 57	2 2.1 2.1
12 60 13 65 14 70	130 140 150	22 24 25	31 33 35	_ _ _	46 48 51	54 58.7 63.5	1.1 1.1 1.5	2.1 2.1 2.1	150 160 180	35 37 42	60 64 74	2.1 2.1 3
15 75 16 80 17 85	160 170 180	27 28 30	37 39 41	_ _ _	55 58 60	68.3 68.3 73	1.5 1.5 2	2.1 2.1 3	190 200 210	45 48 52	77 80 86	3 3 4
18 90 19 95 20 100	190 200 215	30 33 36	43 45 47	- - 51	64 67 73	73 77.8 82.6	2 2 2.1	3 3 3	225 240 250	54 55 58	90 95 98	4 4 4

Remarks: 1. I'min is the smallest chamfer dimension.
2. The chamfer dimensions given in this table do not necessarily apply to:

- (3) the front face side of angular contact bearing
- (1) the groove side of bearing rings with snap ring groove(2) the flangeless side of thin cylindrical roller bearing rings
- (4) inner rings of bearings with tapered bore

Table 4.2.2 Boundary D	imer	nsions (of Dia	amete	r Ser	ies 3,	4			(4/8)			Unit : mm
Single row, radial ball beari	ngs			63 73									
Double row, radial ball bear	rings			13			33 53						
Cylindrical roller bearings				N3		N23	- 30				N4		
Spherical roller bearings				213		223							
				Dia	amete	r seri	es 3			D	amete	r serie:	s 4
Daning ha		40		W	idth s	eries		Char	_		Width	series	
Bearing bo diameter	re	outside r D	8	0	1	2	3	dime	nsion	outside r D	0	2	dimension
Nominal		ontin o			Dim	ensio	n series	3		ă o	Dir	nensio	n series
		Bearing ou diameter D	83	03	13	23	33	83	03 33	Bearing o diameter	04	24	04 ≀ 24
Bore No.	d	g <u>g</u>			 Width	 n B		r n	nin	ĕ ĕ	Wic	th B	r _{min}
21 10 22 11 24 12	10	225 240 260	37 42 44	49 50 55	53 57 62	77 80 86	87.3 92.1 106	2.1 3 3	3 3 3	260 280 310	60 65 72	100 108 118	4 4 5
26 13 28 14 30 15	10	280 300 320	48 50 –	58 62 65	66 70 75	93 102 108	112 118 128	3 4 -	4 4 4	340 360 380	78 82 85	128 132 138	5 5 5
32 16 34 17 36 18	70	340 360 380	- - -	68 72 75	79 84 88	114 120 126	136 140 150	_ _ _	4 4 4	400 420 440	88 92 95	142 145 150	5 5 6

92 132 155

106 145 180

138 165

Remarks: 1. I'min is the smallest chamfer dimension.

2. The chamfer dimensions given in this table do not necessarily apply to:

- (1) the groove side of bearing rings with snap ring groove
- (3) the front face side of angular contact bearing
- (2) the flangeless side of thin cylindrical roller bearing rings
- (4) inner rings of bearings with tapered bore

Table 4.2.2 Boundary Dime	ensions	of Dia	amete	er Ser	ies 3,	4			(5/8)			Unit : mm
Single row, radial ball bearings			63 73									
Double row, radial ball bearings			13			33 53						
Cylindrical roller bearings			N3		N23					N4		
Spherical roller bearings			213		223							
			Dia	amete	r seri	es 3			D	iamete	r series	s 4
Daning have			W	idth s	eries		Char		4	Width	series	Chamfer
Bearing bore diameter	lide	8	0	1	2	3	dime	nsion	ide	0	2	dimension
Nominal	outside r D			Dim	ensio	n series	6		outside r D	Dir	mensio	n series
	Bearing ou diameter D	83	03	13	23	33	83	03 ² 33	Bearing c	04	24	04 ~ 24
Bore No. d	ШО			⊥ Width	⊥ ı B		r r	l nin	ШО	Wid	⊥ dth B	r min
48 240 52 260 56 280	500 540 580	- - -	95 102 108	114 123 132	155 165 175	195 206 224	_ _ _	5 6 6	580 620 670	122 132 140	190 206 224	6 7.5 7.5
60 300 64 320 68 340	620 670 710	_ _ _	109 112 118	140 155 165	185 200 212	236 258 272	_ _ _	7.5 7.5 7.5	710 750 800	150 155 165	236 250 265	7.5 9.5 9.5
72 360 76 380 80 400	750 780 820	_ _ _	125 128 136	170 175 185	224 230 243	290 300 308	_ _ _	7.5 7.5 7.5	850 900 950	180 190 200	280 300 315	9.5 9.5 12

Remarks: 1. I'min is the smallest chamfer dimension.

2. The chamfer dimensions given in this table do not necessarily apply to:

250 315

200 265 345

155 212 280 365

- (1) the groove side of bearing rings with snap ring groove
- (3) the front face side of angular contact bearing
- (2) the flangeless side of thin cylindrical roller bearing rings

(4) inner rings of bearings with tapered bore

9.5

9.5

Table 4.2.2 Boundary Dimer	nsions (of Dia	amete	r Ser	ies 3,	4			(6/8)			Unit : mm
Single row, radial ball bearings			63 73									
Double row, radial ball bearings			13			33 53						
Cylindrical roller bearings			N3		N23					N4		
Spherical roller bearings			213		223							
			Dia	amete	r seri	es 3		1	D	iamete	r serie:	s 4
Dagwing barr	4)		W	idth s	eries		Char	_		Width	series	Jonannei
Bearing bore diameter	outside r D	8	0	1	2	3	dime	nsion	outside r D	0	2	dimension
Nominal	ont.			Dim	ensio	n series	3		a Sign	Dir	nensio	n series
	Bearing ou diameter D	83	03	13	23	33	83	03 33	Bearing o diameter l	04	24	04 ≀ 24
Bore No. d	σр			Width	⊥ ı B		r r	nin	σσ	Wic	⊥ dth B	r min
96 480 /500 500 /530 530	980 1030 1090	- - -	160 170 180	218 230 243	290 300 325	375 388 412		9.5 12 12	1120 1150 1220	230 236 250	365 375 400	15 15 15
/560 560 /600 600 /630 630	1150 1220 1280	_ _ _	190 200 206	258 272 280	335 355 375	438 462 488	-	12 15 15	1280 1360 1420	258 272 280	412 438 450	15 15 15
/670 670 /710 710 /750 750	1360 1420 1500	_ _ _	218 224 236	300 308 325	400 412 438	515 530 560	_ _ _	15 15 15	1500 - -	290 - -	475 - -	15 - -

355 462 600

375 488 630

280 388 500 650

800

850

900

/800

/850

/900

Remarks: 1. I'min is the smallest chamfer dimension.
2. The chamfer dimensions given in this table do not necessarily apply to:

258

- (1) the groove side of bearing rings with snap ring groove
- (3) the front face side of angular contact bearing
- (2) the flangeless side of thin cylindrical roller bearing rings

1600

1700

1780

(4) inner rings of bearings with tapered bore

15

19

19

Table 4.2.2 Boundary Dime	nsions (of Dia	amete	er Ser	ies 3,	4			(7/8)			Unit : mm
Single row, radial ball bearings			63 73									
Double row, radial ball bearings			13			33 53						
Cylindrical roller bearings			N3		N23	- 00				N4		
Spherical roller bearings			213		223							
			Dia	amete	r serie	es 3	I		D	iamete	r serie:	s 4
D	_		W	idth s	eries		Char			Width	series	Chamfer
Bearing bore diameter	outside r D	8	0	1	2	3	dime	nsion	outside r D	0	2	dimension
Nominal	¥ _			Dim	ensior	n series	3			Din	nensio	n series
	Bearing ou diameter D	83	03	13	23	33	83	03 33	Bearing o diameter l	04	24	04 ≀ 24
Bore No. d	<u>@</u>			 Width	 ı Β		r n	nin	□ Œ Œ	Wid	th B	rmin
/950 950 /1000 1000 /1060 1060	1850 1950 —	- - -	290 300 –	400 412 –	515 545 –	670 710 –		19 19 –	- - -	- - -	_ _ _	- - -
/1120 1120 /1180 1180 /1250 1250	- - -	- - -	_ _ _	_ _ _	_ _ _	_ _ _	 - -	_ _ _	- - -	_ _ _	_ _ _	- - -
/1320 1320 /1400 1400 /1500 1500	- - -	_ _ _	- - -	- - -	- - -	_ _ _	 - -	_ _ _	- - -	_ 	_ _ _	- - -

Remarks: 1. I'min is the smallest chamfer dimension.

- 2. The chamfer dimensions given in this table do not necessarily apply to:
 - (1) the groove side of bearing rings with snap ring groove
 - (2) the flangeless side of thin cylindrical roller bearing rings
- (3) the front face side of angular contact bearing
- (4) inner rings of bearings with tapered bore

Single row, radial ball bearings			63 73									
Double row, radial ball bearings			13			33 53						
Cylindrical roller bearings			N3		N23					N4		
Spherical roller bearings			213		223							
			Dia	amete	r serie	es 3		•	Di	amete	r series	s 4
B			W	idth s	eries		Char			Width	series	Chamfer
Bearing bore diameter	outside r D	8	0	1	2	3	dime	nsion	outside r D	0	2	dimension
Nominal	D Zuts			Dim	ensior	series	3			Din	nensio	n series
	Bearing d diameter	83	03	13	23	33	83	03	Bearing diameter	04	24	04 ~
Doro No. d	Bea dia							33	Beg dia			24
Bore No. d				Width	В		r n	nin		Wid	th B	r _{min}
/1600 1600	_	_	_	_	_	_	_	_	_	_	_	_
/1700 1700	_	_	_	_	_	_	-	_	_	_	_	_
/1800 1800		_	_	_	_	_	_	_	_	_	_	_
/1900 1900	-	_	_	_	_	_	_	_	_	_	_	_
/2000 2000	_	_	_	_	_	_	_	_	_	_		_

Remarks: 1. I'min is the smallest chamfer dimension.

- 2. The chamfer dimensions given in this table do not necessarily apply to:
 - (1) the groove side of bearing rings with snap ring groove
- (3) the front face side of angular contact bearing
- (2) the flangeless side of thin cylindrical roller bearing rings
- (4) inner rings of bearings with tapered bore

Table 4.3.1 Boundary Dimensions of Tapered Roller Bearings (1/3)

Tapere	d roller			329						320			330						331			
	g bore		D	iameter	series	9					Diame	ter ser	ies 0					Di	ameter s	series	1	
diame Nomir		Outside diameter	Wi	dth serie	es 2	Cha dime		Outside diameter	Wic	dth serie	s 2	Wi	dth seri	es 3		mfer nsion	Outside diameter	Wie	dth serie	s 3		mfer nsion
Bore No.	d	D	В	С	Т	Inner ring	oin Outer ring	D	В	С	Т	В	С	Т	Inner ring	nin Outer ring	D	В	С	Т		nin Outer ring
02	15	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
03 04	17 20	- 37	_ 12	9	_ 12	0.3	0.3	- 42	_ 15	_ 12	_ 15	_ _	_	_	_ 0.6	_ 0.6	-	_	_	<u>-</u>	_	_
/22	22	40	12	9	12	0.3	0.3	44	15	11.5	15	_	_	_	0.6	0.6	_	_	-	_	_	_
05 /28	25 28	42 45	12 12	9 9	12 12	0.3 0.3	0.3 0.3	47 52	15 16	11.5 12	15 16	17 –	14 -	17 –	0.6 1	0.6 1	_	_	_	_	_	_
06	30	47	12	9	12	0.3	0.3	55	17	13	17	20	16	20	1	1	_	_	_	_	_	_
/32 07	32 35	52 55	15 14	10 11.5	14 14	0.6 0.6	0.6 0.6	58 62	17 18	13 14	17 18	_ 21	_ 17	_ 21	1 1	1 1	_ _	_	_	_	_	_
08	40	62	15	12	15	0.6	0.6	68	19	14.5	19	22	18	22	1	1	75	26	20.5	26	1.5	1.5
09 10	45 50	68 72	15 15	12 12	15 15	0.6 0.6	0.6 0.6	75 80	20 20	15.5 15.5	20 20	24 24	19 19	24 24	1	1	80 85	26 26	20.5 20	26 26	1.5 1.5	1.5 1.5
															· 	· 						
11 12	55 60	80 85	17 17	14 14	17 17	1	1 1	90 95	23 23	17.5 17.5	23 23	27 27	21 21	27 27	1.5 1.5	1.5 1.5	95 100	30 30	23 23	30 30	1.5 1.5	1.5 1.5
13	65	90	17	14	17	1	1	100	23	17.5	23	27	21	27	1.5	1.5	110	34	26.5	34	1.5	1.5

Remarks: 1. rmin is the smallest chamfer dimension.

2. Dimensions B, C, T of 32000 and 32200 series bearings without prefix E and suffix J listed on the pages from D84 to D87 are differ from the above dimensions.

Note: (1) To be applied to 30300D series.

Table 4.3.1 Boundary Dimensions of Tapered Roller Bearings (2/3)

Tapere				329						320			330						331			
Bearin	_		D	iameter	series	9					Diame	ter ser	ies 0					Di	ameter	series	1	
diamet Nomin		Outside diameter	Wie	dth seri	es 2	Chai dimei		Outside diameter	Wic	dth serie	es 2	Wie	dth serie	s 3	Cha dime		Outside diameter	Wid	dth seri	es 3	Cha dime	mfer
Bore No.	d	D	В	С	Т	Inner ring	oin Outer ring	D	В	С	Т	В	С	Т		nin Outer ring	D	В	С	Т		outer ring
14	70	100	20	16	20	1 1 1	1	110	25	19	25	31	25.5	31	1.5	1.5	120	37	29	37	2	1.5
15	75	105	20	16	20		1	115	25	19	25	31	25.5	31	1.5	1.5	125	37	29	37	2	1.5
16	80	110	20	16	20		1	125	29	22	29	36	29.5	36	1.5	1.5	130	37	29	37	2	1.5
17	85	120	23	18	23	1.5	1.5	130	29	22	29	36	29.5	36	1.5	1.5	140	41	32	41	2.5	2
18	90	125	23	18	23	1.5	1.5	140	32	24	32	39	32.5	39	2	1.5	150	45	35	45	2.5	2
19	95	130	23	18	23	1.5	1.5	145	32	24	32	39	32.5	39	2	1.5	160	49	38	49	2.5	2
20	100	140	25	20	25	1.5	1.5	150	32	24	32	39	32.5	39	2	1.5	165	52	40	52	2.5	2
21	105	145	25	20	25	1.5	1.5	160	35	26	35	43	34	43	2.5	2	175	56	44	56	2.5	2
22	110	150	25	20	25	1.5	1.5	170	38	29	38	47	37	47	2.5	2	180	56	43	56	2.5	2
24	120	165	29	23	29	1.5	1.5	180	38	29	38	48	38	48	2.5	2	200	62	48	62	2.5	2 –
26	130	180	32	25	32	2	1.5	200	45	34	45	55	43	55	2.5	2	_	-	_	_	-	
28	140	190	32	25	32	2	1.5	210	45	34	45	56	44	56	2.5	2	_	-	_	_	-	
30	150	210	38	30	38	2.5	2	225	48	36	48	59	46	59	3	2.5	_	-	_	_	-	_
32	160	220	38	30	38	2.5	2	240	51	38	51	-	_	-	3	2.5	_	-	_	_	-	_
34	170	230	38	30	38	2.5	2	260	57	43	57	-	_	-	3	2.5	_	-	_	_	-	_

Remarks: 1. rmin is the smallest chamfer dimension.

2. Dimensions B, C, T of 32000 and 32200 series bearings without prefix E and suffix J listed on the pages from D84 to D87 are differ from the above dimensions.

Note: (1) To be applied to 30300D series.

Table 4.3.1 Boundary Dimensions of Tapered Roller Bearings (3/3)

Tapere	ed roller			329						320			330						331			
	ng bore		Dia	ameter	series 9	9					Diame	ter sei	ies 0					Di	iameter	series	1	
diame Nomir	nal	Outside diameter	Wid	lth seri	es 2		mfer nsion	Outside diameter	Wic	dth seri	es 2	Wi	dth seri	es 3			Outside diameter	Wi	dth seri	es 3	1	mfer nsion
Bore No.	d	D	В	С	Т	rn Inner ring	oin Outer ring	D	В	С	Т	В	С	Т	Inner ring	ⁿⁱⁿ Outer ring	D	В	С	Т		outer ring
36 38 40	180 190 200	250 260 280	45 45 51	34 34 39	45 45 51	2.5 2.5 3	2 2 2.5	280 290 310	64 64 70	48 48 53	64 64 70	- - -	_ _ _	_ _ _	3 3 3	2.5 2.5 2.5	- - -	- -	_ _ _	_ _ _	- -	_ _ _
44 48	220 240	300 320	51 51	39 39	51 51	3 3	2.5 2.5	340 360	76 76	57 57	76 76				4	3						
52	260	360	63.5	48	63.5	3	2.5	400	87	65	87	_	_	_	5	4	-	_	_	_	_	_
56 60 64	280 300 320	380 420 440	63.5 76 76	48 57 57	63.5 76 76	3 4 4	2.5 3 3	420 460 480	87 100 100	65 74 74	87 100 100	- - -	_ _ _	_ _ _	5 5 5	4 4 4	- - -	- - -	_ _ _	_ _ _	_ _ _	- - -
68 72	340 360	460 480	76 76	57 57	76 76	4 4	3	_ _	_ _	_ _ _	_ _	_ _ _					-					_ _

- Remarks: 1. rmin is the smallest chamfer dimension.
 - 2. Dimensions B, C, T of 32000 and 32200 series bearings without prefix E and suffix J listed on the pages from D84 to D87 are differ from the above dimensions.

Note: (1) To be applied to 30300D series.

Table 4.3.2 Boundary Dimensions of Tapered Roller Bearings (1/3)

Tapere				302	2		322	2		332					30)3	30)3D		313			323	3		
	g bore					Diar	meter	series 2										I	Diame	eter se	eries 3					
diame Nomir		Outside diameter	Wie	dth se	eries 0	Wi	idth se	eries 2	Wid	th serie	es 3			Outside diameter	,	Width	series	s 0	Wid	th ser	ies 1	Wi	dth se	ries 2		amfer ension
Bore No.	d	D	В	С	Т	В	С	Т	В	С	Т	Inner	ⁿⁱⁿ Outer ring	D	В	С	C(1)	Т	В	С	Т	В	С	Т	Inne	^{min} rOuter ring
02 03 04	15 17 20	- 40 47	_ 12 14	- 11 12	_ 13.25 15.25	- 16 18	- 14 15	_ 17.25 19.25	_ _ _	- - -	_ _ _	_ 1 1	_ 1 1	42 47 52	13 14 15	11 12 13	- - -	14.25 15.25 16.25	- - -	_ _ _	_ _ _	– 19 21	– 16 18	_ 20.25 22.25	1 1 1.5	1 1 1.5
/22 05 /28	22 25 28	- 52 58	_ 15 _	- 13 -	– 16.25 –	- 18 19	- 16 16	- 19.25 20.25	- 22 24	- 18 19	- 22 24	- 1 1	- 1 1	- 62 -	- 17 -	_ 15 _	- 13 -	_ 18.25 _	_ _ _	_ _ _	- - -	- 24 -	_ 20 _	_ 25.25 _	_ 1.5 _	- 1.5 -
06 /32 07	30 32 35	62 65 72	16 17 17	14 15 15	17.25 18.25 18.25	20 26.5 23	17 5 17 19	21.25 22 24.25	25 26 28	19.5 20.5 22	25 26 28	1 1 1.5	1 1 1.5	72 75 80	19 _ 21	16 - 18	14 - 15	20.75 - 22.75	- - -	_ _ _	- - -	27 28 31	23 23 25	28.75 29.75 32.75	1.5	- 1
08 09 10	40 45 50	80 85 90	18 19 20	16 16 17	19.75 20.75 21.75	23 23 23	19 19 19	24.75 24.75 24.75	32 32 32	25 25 24.5	32 32 32	1.5 1.5 1.5	1.5 1.5 1.5	90 100 110	23 25 27	20 22 23	17 18 19	25.25 27.25 29.25	_ _ _	_ _ _	- - -	33 36 40	27 30 33	35.25 38.25 42.25	2	1.5 1.5 2
11 12 13	55 60 65	100 110 120	21 22 23	18 19 20	22.75 23.75 24.75	25 28 31	21 24 27	26.75 29.75 32.75	35 38 41	27 29 32	35 38 41	2 2 2	1.5 1.5 1.5	120 130 140	29 31 33	25 26 28	21 22 23	31.5 33.5 36	_ _ _	_ _ _	- - -	43 46 48	35 37 39	45.5 48.5 51	2.5 3 3	2 2.5 2.5

Remarks: 1. rmin is the smallest chamfer dimension.

2. Dimensions B, C, T of 32000 and 32200 series bearings without prefix E and suffix J listed on the pages from D84 to D87 are differ from the above dimensions.

Note: (1) To be applied to 30300D series.

Table 4.3.2 Boundary Dimensions of Tapered Roller Bearings (2/3)

Tapered				302	2		322	2		332					30)3	30)3D		313			323	3		
Bearing	_					Diar	neter	series 2										i	Diame	ter se	eries 3					
diamet Nomina		Outside diameter	Wi	dth se	eries 0	Wi	idth se	eries 2	Wid	th seri	es 3			Outside diameter		Width	serie	s 0	Wid	th ser	ries 1	Wi	dth se	ries 2		amfer ension
Bore No.	d	D	В	С	Т	В	С	Т	В	С	Т	Inner	nin Outer ring	D	В	С	C(1)	Т	В	С	Т	В	С	Т	Inne	min er Outer gring
14	70	125	24	21	26.25	31	27	33.25	41	32	41	2	1.5	150	35	30	25	38	-	_	-	51	42	54	3	2.5
15	75	130	25	22	27.25	31	27	33.25	41	31	41	2	1.5	160	37	31	26	40	-	_	-	55	45	58	3	2.5
16	80	140	26	22	28.25	33	28	35.25	46	35	46	2.5	2	170	39	33	27	42.5	-	_	-	58	48	61.5	3	2.5
17	85	150	28	24	30.5	36	30	38.5	49	37	49	2.5	2	180	41	34	28	44.5	_	_	_	60	49	63.5	4	3
18	90	160	30	26	32.5	40	34	42.5	55	42	55	2.5	2	190	43	36	30	46.5	_	_	_	64	53	67.5	4	3
19	95	170	32	27	34.5	43	37	45.5	58	44	58	3	2.5	200	45	38	32	49.5	_	_	_	67	55	71.5	4	3
20	100	180	34	29	37	46	39	49	63	48	63	3	2.5	215	47	39	_	51.5	51	35	56.5	73	60	77.5	4	3
21	105	190	36	30	39	50	43	53	68	52	68	3	2.5	225	49	41	_	53.5	53	36	58	77	63	81.5	4	3
22	110	200	38	32	41	53	46	56	–	–	–	3	2.5	240	50	42	_	54.5	57	38	63	80	65	84.5	4	3
24	120	215	40	34	43.5	58	50	61.5	_	_	-	3	2.5	260	55	46	_	59.5	62	42	68	86	69	90.5	4	3
26	130	230	40	34	43.75	64	54	67.75	_	_	-	4	3	280	58	49	_	63.75	66	44	72	_	_	-	5	4
28	140	250	42	36	45.75	68	58	71.75	_	_	-	4	3	300	62	53	_	67.75	70	47	77	_	_	-	5	4
30	150	270	45	38	49	73	60	77	-	-	-	4	3	320	65	55	<u>-</u>	72	75	50	82	-	-	-	5	4
32	160	290	48	40	52	80	67	84	-	-	-	4	3	340	68	58	-	75	-	-	_	-	-	-	5	4
34	170	310	52	43	57	86	71	91	-	-	-	5	4	360	72	62	-	80	-	-	_	-	-	-	5	4

- Remarks: 1. rmin is the smallest chamfer dimension.
 - 2. Dimensions B, C, T of 32000 and 32200 series bearings without prefix E and suffix J listed on the pages from D84 to D87 are differ from the above dimensions.

Note: (1) To be applied to 30300D series.

Table 4.3.2 Boundary Dimensions of Tapered Roller Bearings (3/3)

Tapere bearing	ed roller			302	2		32	2		332					30	3	30	03D		313	1		323	,		
	ng bore					Diar	neter	series 2											Diame	eter se	eries 3					
diame [†] Nomin	nal	Outside diameter	W	idth se	eries 0	W	idth se	eries 2	Widt	h seri	es 3	Cha	ımfer ension	Outside diameter	٧	Vidth	serie	s 0	Wid	th sei	ries 1	Wi	idth sei	ries 2		amfer ension
Bore No.	d	D	В	С	Т	В	С	Т	В	С	Т	Inner	^{min} 'Outer ring	D	В	С	C(1)	Т	В	С	Т	В	С	Т	Inne	min rOuter ring
36 38 40	180 190 200	320 340 360	52 55 58	43 46 48	57 60 64	86 92 98	71 75 82	91 97 104	_ _ _	- - -	_ _ _	5 5 5	4 4 4	- - -	_ _ _	- -	- - -	_ _ _	- - -	-						
44 48 52	220 240 260	- - -	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	- - -	_, _,	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	- - -	_ _ _	- - -	_ _ _	_ _ _	- - -
56 60 64	280 300 320	_ _ _ _	_ _ _					_ _ _ _			_ _ _	_ _ _	_ _ _	_ _ _ _		_ _ _		_ _ _ _		_ _ _					_ _ _	_ _ _
68 72	340 360	_ _	_ _	_ _	_ _	_ _	_	_ _	_ _	<u>-</u>	_	_ _	_ _	_ _	_ _	_	<u>-</u>		_ _	_		_ _	_		_	

- Remarks: 1. rmin is the smallest chamfer dimension.
 - 2. Dimensions B, C, T of 32000 and 32200 series bearings without prefix E and suffix J listed on the pages from D84 to D87 are differ from the above dimensions.

Note: (1) To be applied to 30300D series.

Table 4.4.1 Boundary Dimensions of Thrust Bearings with Flat Back Face

(1/4)

Unit: mm

Single direct thrust ball be Double direct	earings									511	
thrust ball b	earings										
Spherical ro											
Bearing			Diam	eter se	ries 0	1		Diame	eter seri	es 1	
diamete		Bearing	Dime	nsion s	series		Bearing	Dime	nsion s	eries	
Nomina	l	outside diameter	70	90	10	Chamfer dimension	outside diameter	71	91	11	Chamfer dimension
Bore No.	d	Nominal D	Heigl	nt Nom	inal T	rmin	Nominal D	Heigl	nt Nomii	nal T	r min
4 6 8	4 6 8	12 16 18	4 5 5	=	6 7 7	0.3 0.3 0.3	_ _ _	= =	=	_ _ _	_ _ _
00 01 02	10 12 15	20 22 26	5 5 5	=	7 7 7	0.3 0.3 0.3	24 26 28	6 6 6		9 9 9	0.3 0.3 0.3
03 04 05	17 20 25	28 32 37	5 6 6		7 8 8	0.3 0.3 0.3	30 35 42	6 7 8	_ _ _	9 10 11	0.3 0.3 0.6
06 07 08	30 35 40	42 47 52	6 6 6	_ _ _	8 8 9	0.3 0.3 0.3	47 52 60	8 8 9	_ _ _	11 12 13	0.6 0.6 0.6
09 10 11	45 50 55	60 65 70	7 7 7	_ _ _	10 10 10	0.3 0.3 0.3	65 70 78	9 9 10	_ _ _	14 14 16	0.6 0.6 0.6
12 13 14	60 65 70	75 80 85	7 7 7	_ _ _	10 10 10	0.3 0.3 0.3	85 90 95	11 11 11		17 18 18	1 1 1
15 16 17	75 80 85	90 95 100	7 7 7	_ _ _	10 10 10	0.3 0.3 0.3	100 105 110	11 11 11	_ _ _	19 19 19	1 1 1

Remarks: rmin is the smallest chamfer dimension.

Table 4.4.1 Boundary Dimensions of Thrust Bearings with Flat Back Face

(2/4)

Unit: mm

Single directly thrust ball to the second se	pearings ection pearings oller									511	
Bearing			Diam	eter se	ries 0	1		Diam	eter seri	es 1	1
diamete		Bearing outside	Dime	nsion s	series	Chamfer	Bearing outside	Dime	ension s	eries	Chamfer
Nomina	ıİ	diameter	70	90	10	dimension	diameter	71	91	11	dimension
Bore No.	d	Nominal D	Heigl	nt Nom	inal T	r _{min}	Nominal D	Heig	ht Nomi	nal T	r _{min}
18 20 22	90 100 110	105 120 130	7 9 9	_ _ _	10 14 14	0.3 0.6 0.6	120 135 145	14 16 16	21 21	22 25 25	1 1 1
24	120	140	9	_	14	0.6	155	16	21	25	1 1 1
26	130	150	9	_	14	0.6	170	18	24	30	
28	140	160	9	_	14	0.6	180	18	24	31	
30	150	170	9	_	14	0.6	190	18	24	31	1
32	160	180	9	_	14	0.6	200	18	24	31	1
34	170	190	9	_	14	0.6	215	20	27	34	1.1
36	180	200	9	_	14	0.6	225	20	27	34	1.1
38	190	215	11	_	17	1	240	23	30	37	1.1
40	200	225	11	_	17	1	250	23	30	37	1.1
44	220	250	14	_	22	111	270	23	30	37	1.1
48	240	270	14	_	22		300	27	36	45	1.5
52	260	290	14	_	22		320	27	36	45	1.5
56	280	310	14	_	22	1 1 1	350	32	42	53	1.5
60	300	340	18	24	30		380	36	48	62	2
64	320	360	18	24	30		400	36	48	63	2
68	340	380	18	24	30	1 1 1	420	36	48	64	2
72	360	400	18	24	30		440	36	48	65	2
76	380	420	18	24	30		460	36	48	65	2

Remarks: rmin is the smallest chamfer dimension.

Table 4.4.1 Boundary Dimensions of Thrust Bearings with Flat Back Face

(3/4)

Unit: mm

Single dire thrust ball I Double dire thrust ball I	bearings ection bearings									511	
Spherical r thrust bear											
Bearing	g bore		Diam	eter se	ries 0			Diam	eter seri	es 1	
diamete		Bearing outside		ension s	1	Chamfer	Bearing outside		ension s	I	Chamfer
Nomina	al .	diameter	70	90	10	dimension	diameter	71	91	11	dimension
Bore No.	d	Nominal D	Heigl	nt Nom	inal T	r _{min}	Nominal D	Heig	ht Nomi	nal T	r _{min}
80	400	440	18	24	30	1 1 1	480	36	48	65	2
84	420	460	18	24	30		500	36	48	65	2
88	440	480	18	24	30		540	45	60	80	2.1
92	460	500	18	24	30	1 1 1	560	45	60	80	2.1
96	480	520	18	24	30		580	45	60	80	2.1
/500	500	540	18	24	30		600	45	60	80	2.1
/530	530	580	23	30	38	1.1	640	50	67	85	3
/560	560	610	23	30	38	1.1	670	50	67	85	3
/600	600	650	23	30	38	1.1	710	50	67	85	3
/630	630	680	23	30	38	1.1	750	54	73	95	3
/670	670	730	27	36	45	1.5	800	58	78	105	4
/710	710	780	32	42	53	1.5	850	63	85	112	4
/750	750	820	32	42	53	1.5	900	67	90	120	4
/800	800	870	32	42	53	1.5	950	67	90	120	4
/850	850	920	32	42	53	1.5	1000	67	90	120	4
/900	900	980	36	48	63	2	1060	73	95	130	5
/950	950	1030	36	48	63	2	1120	78	103	135	5
/1000	1000	1090	41	54	70	2.1	1180	82	109	140	5
/1060	1060	1150	41	54	70	2.1	1250	85	115	150	5
/1120	1120	1220	45	60	80	2.1	1320	90	122	160	5
/1180	1180	1280	45	60	80	2.1	1400	100	132	175	6

Remarks: rmin is the smallest chamfer dimension.

(4/4)

Unit: mm

Single direction thrust ball bearings									511	
Double direction thrust ball bearings										
Spherical roller thrust bearings										
Bearing bore		Diame	eter se	ries 0			Diam	eter ser	ies 1	
diameter	Bearing	Dime	nsion s	series		Bearing	Dime	ension s	eries	0, ,
Nominal	outside diameter	70	90	10	Chamfer dimension	outside diameter	71	91	11	Chamfer dimension
Bore No. d	Nominal D	Heigh	nt Nom	inal T	r _{min}	Nominal D	Heig	ht Nomi	nal T	r _{min}
/1250 1250 /1320 1320 /1400 1400	1360 1440 1520	50 _ _	67 _ _	85 95 95	333	1460 1540 1630	_ _ _	_ _ _	175 175 180	666
/1500 1500 /1600 1600 /1700 1700	1630 1730 1840	– – –	_ _ _	105 105 112	4 4 4	1750 1850 1970	_ _ _	_ _ _	195 195 212	6 6 7.5
/1800 1800 /1900 1900 /2000 2000	1950 2060 2160	_ _ _	_ _ _	120 130 130	4 5 5	2080 2180 2300	_ _ _	_ _ _	220 220 236	7.5 7.5 7.5
/2120 2120 /2240 2240 /2360 2360	2300 2430 2550	- - -	_ _ _	140 150 150	5 5 5	2430 2570 2700	_ _ _	_ _ _	243 258 265	7.5 9.5 9.5
/2500 2500	2700	_	_	160	5	2850	_	_	272	9.5

Remarks: rmin is the smallest chamfer dimension.

Table 4.4.2 Boundary Dimensions of Thrust Bearings with Flat Back Face (1/4)

				T	Т				,	
Single direct thrust ball be	tion earings				512					
Double direct thrust ball be						522				
Spherical rol thrust bearin	ller			292						
Bearing I					Diamete	rseries	2			
diameter		Bearing			Dimensi	on serie	s		Chamfer	dimension
Nominal		outside diameter	72	92	12	22	22	2		
Bore No.	d	Nominal D	ŀ	Height N	lominal [*]	Т	Center v Bore d ₂		r min	r 1min
4 6 8	4 6 8	16 20 22	6 6 6	_ _ _	8 9 9	_ _ _	- - -	_ _ _	0.3 0.3 0.3	_ _ _
00 01 02	10 12 15	26 28 32	7 7 8		11 11 12	_ _ 22	_ 10	_ _ 5	0.6 0.6 0.6	_ _ 0.3
03 04 05	17 20 25	35 40 47	8 9 10	_ _ _	12 14 15	26 28	15 20	- 6 7	0.6 0.6 0.6	0.3 0.3
06 07 08	30 35 40	52 62 68	10 12 13	= =	16 18 19	29 34 36	25 30 30	7 8 9	0.6 1 1	0.3 0.3 0.6
09 10 11	45 50 55	73 78 90	13 13 16	_ 21	20 22 25	37 39 45	35 40 45	9 9 10	1 1 1	0.6 0.6 0.6
12 13 14	60 65 70	95 100 105	16 16 16	21 21 21	26 27 27	46 47 47	50 55 55	10 10 10	1 1 1	0.6 0.6 1
15 16 17	75 80 85	110 115 125	16 16 18	21 21 24	27 28 31	47 48 55	60 65 70	10 10 12	1 1 1	1 1 1

Remarks: rmin is the smallest chamfer dimension.

(2/4)

Unit: mm

Single direction thrust ball bearings Double direction thrust ball bearings Spherical roller thrust bearings			292	512	522				
Bearing bore				Diamete				1	
diameter	Bearing outside			Dimensi	on serie	S		Chamfer	dimension
Nominal	diameter	72	92	12	22	2:	2		
Bore No. d	Nominal D	ŀ	leight N	ominal	Τ	Center Bore d2		r min	r 1min
18 90	135	20	27	35	62	75	14	1.1	1
20 100	150	23	30	38	67	85	15	1.1	1
22 110	160	23	30	38	67	95	15	1.1	1
24 120	170	23	30	39	68	100	15	1.1	1.1
26 130	190	27	36	45	80	110	18	1.5	1.1
28 140	200	27	36	46	81	120	18	1.5	1.1
30 150	215	29	39	50	89	130	20	1.5	1.1
32 160	225	29	39	51	90	140	20	1.5	1.1
34 170	240	32	42	55	97	150	21	1.5	1.1
36 180	250	32	42	56	98	150	21	1.5	2
38 190	270	36	48	62	109	160	24	2	2
40 200	280	36	48	62	109	170	24	2	2
44 220	300	36	48	63	110	190	24	2	2
48 240	340	45	60	78	_	_	_	2.1	_
52 260	360	45	60	79	_	_	_	2.1	_
56 280	380	45	60	80	_	_	_	2.1	_
60 300	420	54	73	95	_	_	_	3	_
64 320	440	54	73	95	_	_	_	3	_
68 340	460	54	73	96	_	_	_	3	_
72 360	500	63	85	110	_	_	_	4	_
76 380	520	63	85	112	_	_	_	4	_

Remarks: rmin is the smallest chamfer dimension.

(3/4)

Unit: mm

Single direction thrust ball bearings Double direction thrust ball bearings Spherical roller thrust bearings			292	512	522				
Bearing bore				Diamete	series	2		ı	
diameter	Bearing outside			Dimension	on serie	S		Chamfer	dimension
Nominal	diameter	72	92	12	22	22			
Bore No. d	Nominal D	ŀ	leight N	lominal ⁻	Т	Center w Bore d ₂ F		r _{min}	r 1min
80 400 84 420 88 440	540 580 600	63 73 73	85 95 95	112 130 130	_ _ _	_ _ _	_ _ _	4 5 5	_ _ _
92 460 96 480 /500 500	620 650 670	73 78 78	95 103 103	130 135 135	_ _ _	_ 	- - -	5 5 5	111
/530 530 /560 560 /600 600	710 750 800	82 85 90	109 115 122	140 150 160	_ _ _	_ _ _	_ _ _	5 5 5	<u> </u>
/630 630 /670 670 /710 710	850 900 950	100 103 109	132 140 145	175 180 190	_ _ _	_ _ _	_ _ _	6 6 6	
/750 750 /800 800 /850 850	1000 1060 1120	112 118 122	150 155 160	195 205 212		_ _ _	<u>-</u> - -	6 7.5 7.5	_ _ _
/900 900 /950 950 /1000 1000	1180 1250 1320	125 136 145	170 180 190	220 236 250	_ _ _		_ _ _	7.5 7.5 9.5	1 1 1
/1060 1060 /1120 1120 /1180 1180	1400 1460 1520	155 - -	206 206 206	265 - -		_ _ _	- -	9.5 9.5 9.5	_ _ _

Remarks: rmin is the smallest chamfer dimension.

Single direction thrust ball bearings				512					
Double direction thrust ball bearings					522				
Spherical roller thrust bearings			292						
Bearing bore				Diamete	rseries	2			
diameter	Bearing			Dimensi	on serie	s		Chamfer	dimension
Nominal	outside diameter	72	92	12	22	22		_	
Bore No. d	Nominal D	H	leight N	ominal	Т	Center w Bore d ₂ H		r min	r 1min
/1250 1250 /1320 1320	1610 1700	_	216 228	_ _	_	_ _	<u>-</u>	9.5 9.5	<u>-</u>
/1400 1400	1760		234	_	_			12	_
/1500 1500 /1600 1600 /1700 1700	1920 2040 2160	_ _ _	252 264 276	=	_ _ _	_ _ _	_ _ _	12 15 15	_ _ _
/1800 1800 /1900 1900 /2000 2000	2280 _ _	_ _ _	280	_ _ _	_ _ _	_ _ _	_ _ _	15 _ _	_ _ _
/2120 2120 /2240 2240 /2360 2360	_ _ _		_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _
/2500 2500	_	_	_	_	_	_	_	_	_

Remarks: rmin is the smallest chamfer dimension.

Table 4.4.3 Boundary Dimensions of Thrust Bearings with Flat Back Face (1/4)

Single direction thrust ball bearings					513					
Double direction thrust ball bearings						523				
Spherical roller thrust bearings				293						
Bearing bore		Diameter series 3								
diameter		Bearing	Dimension series						Chamfer dimension	
Nominal		outside diameter	73 93 13 23 23				3			
Bore No.	d	Nominal D				Т	Center washer Bore d ₂ Height a		r min	r 1min
4 6 8	4 6 8	20 24 26	7 8 8	_ _ _	11 12 12	_ _ _	_ _ _	_ _ _	0.6 0.6 0.6	_ _ _
00 01 02	10 12 15	30 32 37	9 9 10	_ _ _	14 14 15	_ _ _	_ _ _	_ _ _	0.6 0.6 0.6	_ _ _
03 04 05	17 20 25	40 47 52	10 12 12	=	16 18 18	_ _ 34	_ 20	_ _ 8	0.6 1 1	_ _ 0.3
06 07 08	30 35 40	60 68 78	14 15 17	_ _ 22	21 24 26	38 44 49	25 30 30	9 10 12	1 1 1	0.3 0.3 0.6
09 10 11	45 50 55	85 95 105	18 20 23	24 27 30	28 31 35	52 58 64	35 40 45	12 14 15	1 1.1 1.1	0.6 0.6 0.6
12 13 14	60 65 70	110 115 125	23 23 25	30 30 34	35 36 40	64 65 72	50 55 55	15 15 16	1.1 1.1 1.1	0.6 0.6 1
15 16 17	75 80 85	135 140 150	27 27 29	36 36 39	44 44 49	79 79 87	60 65 70	18 18 19	1.5 1.5 1.5	1 1 1

Remarks: rmin is the smallest chamfer dimension.

Table 4.4.3 Boundary Dimensions of Thrust Bearings with Flat Back Face (2/4)

-	Single direct thrust ball be	tion earings				513					
-	Double directhrust ball be						523				
-	Spherical ro thrust bearir	ller			293						
	Bearing										
	diameter		Bearing outside			Chamfer	dimension				
	Nominal		diameter	73	93	13	23	2			1 4
	Bore No.	d	Nominal D							r min	r _{1min}
	18 20 22	90 100 110	155 170 190	29 32 36	39 42 48	50 55 63	88 97 110	75 85 95	19 21 24	1.5 1.5 2	1-1-
	24 26 28	120 130 140	210 225 240	41 42 45	54 58 60	70 75 80	123 130 140	100 110 120	27 30 31	2.1 2.1 2.1	1.1 1.1 1.1
	30 32 34	150 160 170	250 270 280	45 50 50	60 67 67	80 87 87	140 153 153	130 140 150	31 33 33	2.1 3 3	1.1 1.1 1.1
	36 38 40	180 190 200	300 320 340	54 58 63	73 78 85	95 105 110	165 183 192	150 160 170	37 40 42	3 4 4	2 2 2
	44 48 52	220 240 260	360 380 420	63 63 73	85 85 95	112 112 130	_ _ _		_ _ _	4 4 5	
	56 60 64	280 300 320	440 480 500	73 82 82	95 109 109	130 140 140	_ _ _	=	_ _ _	5 5 5	_ _ _
	68 72 76	340 360 380	540 560 600	90 90 100	122 122 132	160 160 175	_ _ _		_ _ _	5 5 6	

Unit: mm

Table 4.4.3 Boundary Dimensions of Thrust Bearings with Flat Back Face (3/4)

		1			1				ı	
Single direct thrust ball b	tion earings				513					
Double dire	ction					523				
Spherical ro thrust beari				293						
Bearing	bore									
diamete	r	Bearing		Di	imensi	on seri	es		Chamfer	dimension
Nominal		outside diameter	73	93	13	23	23	}		
Bore No.	d	Nominal D	Hoight Nominal T					asher leight a	r _{min}	r _{1min}
80 84 88	400 420 440	620 650 680	100 103 109	132 140 145	175 180 190	=	_ _ _	<u>-</u>	6 6 6	
92 96 /500	460 480 500	710 730 750	112 112 112	150 150 150	195 195 195	_ _ _	_ _ _	_ _ _	6 6 6	_ _ _
/530 /560 /600	530 560 600	800 850 900	122 132 136	160 175 180	212 224 236	_ _ _	_ _ _	_ _ _	7.5 7.5 7.5	
/630 /670 /710	630 670 710	950 1000 1060	145 150 160	190 200 212	250 258 272	=		_ _ _	9.5 9.5 9.5	=
/750 /800 /850	750 800 850	1120 1180 1250	165 170 180	224 230 243	290 300 315	=	_ _ _	_ _ _	9.5 9.5 12	=
/900 /950 /1000	900 950 1000	1320 1400 1460	190 200 –	250 272 276	335 355 —	=			12 12 12	=
/1060 /1120 /1180	1060 1120 1180	1540 1630 1710	_ _ _	288 306 318	_ _ _	_ _ _	_ _ _	_ _ _	15 15 15	_ _ _

Unit: mm

Table 4.4.3 Boundary Dimensions of Thrust Bearings with Flat Back Face (4/4)

Unit: m	ım
---------	----

Single direction thrust ball bearings				513							
Double direction thrust ball bearings					523						
Spherical roller thrust bearings			293								
Bearing bore		Diameter series 3									
diameter	Bearing		Dimension series						dimension		
Nominal	outside diameter	73	93	13	23	23	3				
Bore No. d	Nominal D	He	eight N	lominal	Center v Bore d ₂ h		r min	r 1min			
/1250 1250 /1320 1320 /1400 1400	1800 1900 2000	_ _ _	330 348 360		_ _ _	_ _ _	_ _ _	15 19 19	_ _ _		
/1500 1500 /1600 1600 /1700 1700	2140 2270 –	=	384 402 –	=	=	_ _ _	_ _ _	19 19 —			
/1800 1800 /1900 1900 /2000 2000		_ _ _	=	=	=	= =	_ _ _				
/2120 2120 /2240 2240 /2360 2360	_ 	- - -	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _		_ _ _		
/2500 2500	_	_	_	_	_	_	_	_	_		

Table 4.4.4 Boundary Dimensions of Thrust Bearings with Flat Back Face (1/4)

Single direction thrust ball bearings Double direction thrust ball bearings Spherical roller thrust bearings			294	514	524							
Bearing bore	Diameter series 4									Diameter series 5		
diameter	Bearing outside		D	imensi	on seri	T		Chamfer	dimension	Bearing outside	Dimension series	Chamfer dimension
Nominal	diameter	74	94	14	24		24	r	r 4	diameter	95	r
Bore No. d	Nominal D	Η	eight N	Iomina	ΙΤ		washer Height a	r min	r 1min	Nominal D	Height Nominal T	r min
4 4 6 6 8 8			_	_	_	_	_	_	_	_	_	_
8 8	_									_		
00 10 01 12	_	_	_	_	_	_	_	_	_	_	<u> </u>	_
02 15	_	_	_	_	_	_	_	_	_	_	_	_
03 17 04 20 05 25	_ _ 60	_ _ 16	_ _ 21	_ _ 24	_ _ 45	_ _ 15	_ 11	- - 1	_ _ 0.6	52 60 73	21 24 29	1 1 1.1
06 30 07 35 08 40	70 80 90	18 20 23	24 27 30	28 32 36	52 59 65	20 25 30	12 14 15	1 1.1 1.1	0.6 0.6 0.6	85 100 110	34 39 42	1.1 1.1 1.5
09 45 10 50 11 55	100 110 120	25 27 29	34 36 39	39 43 48	72 78 87	35 40 45	17 18 20	1.1 1.5 1.5	0.6 0.6 0.6	120 135 150	45 51 58	2 2 2.1
12 60 13 65 14 70	130 140 150	32 34 36	42 45 48	51 56 60	93 101 107	50 50 55	21 23 24	1.5 2 2	0.6 1 1	160 170 180	60 63 67	2.1 2.1 3
15 75 16 80 17 85	160 170 180	38 41 42	51 54 58	65 68 72	115 120 128	60 65 65	26 27 29	2 2.1 2.1	1 1 1.1	190 200 215	69 73 78	3 3 4

Unit: mm

Table 4.4.4 Boundary Dimensions of Thrust Bearings with Flat Back Face (2/4)

Single direct thrust ball be Double direct thrust ball be	earings ction				514	524								
thrust ball be Spherical ro thrust bearir	ller			294		02.								
Bearing	bore				Diam	eter se	ries 4				Diam	Diameter series 5		
diameter		Bearing		D	imensi	on seri	es		Chamfer	dimension	Bearing outside	Dimension series	Chamfer dimension	
Nominal		outside diameter	74	94	14	24	2	24		14	diameter	95		
Bore No.	d	Nominal D	Н	eight N	Iomina	ΙΤ		washer Height a	r min	r 1min	Nominal D	Height Nominal T	r min	
18 20 22	90 100 110	190 210 230	45 50 54	60 67 73	77 85 95	135 150 166	70 80 90	30 33 37	2.1 3 3	1.1 1.1 1.1	225 250 270	82 90 95	4 4 5	
24 26 28	120 130 140	250 270 280	58 63 63	78 85 85	102 110 112	177 192 196	95 100 110	40 42 44	4 4 4	1.5 2 2	300 320 340	109 115 122	5 5 5	
30 32 34	150 160 170	300 320 340	67 73 78	90 95 103	120 130 135	209 226 236	120 130 135	46 50 50	4 5 5	2 2 2.1	360 380 400	125 132 140	666	
36 38 40	180 190 200	360 380 400	82 85 90	109 115 122	140 150 155	245 _ _	140 _ _	52 _ _	5 5 5	3 _ _	420 440 460	145 150 155	6 6 7.5	
44 48 52	220 240 260	420 440 480	90 90 100	122 122 132	160 160 175	_ _ _	_ _ _	_ _ _	6 6 6	_ _ _	500 540 580	170 180 190	7.5 7.5 9.5	
56 60 64	280 300 320	520 540 580	109 109 118	145 145 155	190 190 205	_ _ _	_ _ _	_ _ _	6 6 7.5	_ _ _	620 670 710	206 224 236	9.5 9.5 9.5	
68 72 76	340 360 380	620 640 670	125 125 132	170 170 175	220 220 224	_ _ _	 	=	7.5 7.5 7.5	=	750 780 820	243 250 265	12 12 12	

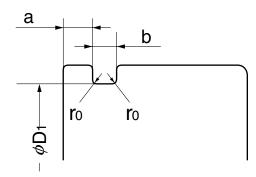
Unit: mm

Main Menu 🔱 Back

Table 4.4.4 Boundary Dimensions of Thrust Bearings with Flat Back Face (3/4)

Single dire thrust ball I Double dire thrust ball I	bearings ection				514	524								
Spherical r thrust bear				294										
Bearing	g bore				Diam	eter se	ries 4					Diameter series 5		
diamete		Bearing outside		D	imensi	on seri	es		Chamfer	dimension	Bearing outside	Dimension series	Chamfer dimension	
Nomina	al 	diameter	74	94	14	24	2		. .	۲	diameter	95	I	
Bore No.	d	Nominal D	Н	eight N	Iomina	ΙΤ	Center Bore d ₂	washer Height a	r min	r 1min	Nominal D	Height Nominal T	r min	
80 84 88	400 420 440	710 730 780	140 140 155	185 185 206	243 243 265	_ _ _	_ _ _	- - -	7.5 7.5 9.5	_ _ _	850 900 950	272 290 308	12 15 15	
92 96 /500	460 480 500	800 850 870	155 165 165	206 224 224	265 290 290	=	_ _ _	_ _ _	9.5 9.5 9.5	_ _ _	980 1000 1060	315 315 335	15 15 15	
/530 /560 /600	530 560 600	920 980 1030	175 190 195	236 250 258	308 335 335	=	_ _ _	_ _ _	9.5 12 12	_ _ _	1090 1150 1220	335 355 375	15 15 15	
/630 /670 /710	630 670 710	1090 1150 1220	206 218 230	280 290 308	365 375 400	_ _ _	=	_ _ _	12 15 15	_ _ _	1280 1320 1400	388 388 412	15 15 15	
/750 /800 /850	750 800 850	1280 1360 1440	236 250 –	315 335 354	412 438 –	_ _ _	_ _ _	_ _ _	15 15 15	_ _ _	- - -	_ _ _	_ _ _	
/900 /950 /1000	900 950 1000	1520 1600 1670	_ _ _	372 390 402	_ _ _	_ _ _	_ _ _	- - -	15 15 15	_ _ _	_ _ _	_ _ _	_ _ _	
/1060 /1120 /1180	1060 1120 1180	1770 1860 1950	_ _ _	426 444 462	=	_ _ _	=	_ _ _	15 15 19		= =		- - -	

Unit: mm


Table 4.4.4 Boundary Dimensions of Thrust Bearings with Flat Back Face (4/4)

Single direction				514								
thrust ball bearings Double direction thrust ball bearings					524							
Spherical roller thrust bearings			294									
Bearing bore				Diame	eter se	ries 4				Diam	eter sei	ries 5
diameter	Bearing		D	imensi	on seri	es		Chamfer	dimension		Dimension series	Chamfer dimension
Nominal	outside diameter	74	94	14	24	24	4			outside diameter	95	
Bore No. d	Nominal D	Н	eight N	lominal	Т	Center v		r min	r 1min	Nominal D	Height Nominal T	r min
/1250 1250 /1320 1320 /1400 1400	2050 2160 2280	_ _ _	480 505 530	_ _ _	_ _ _	_ _ _	_ _ _	19 19 19	_ _ _	- - -	_ _ _	
/1500 1500 /1600 1600 /1700 1700		_ _ _	=			=	_ _ _		=	_ _ _	=	_ _ _
/1800 1800 /1900 1900 /2000 2000	- - -	_ _ _	_ _ _	_ _ _	_ _ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _
/2120 2120 /2240 2240 /2360 2360	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	= =	_ _ _	_ _ _	= =	_ _ _
/2500 2500	_	_	_	_	_	_	_	_	_	_	_	_

Remarks: rmin is the smallest chamfer dimension.

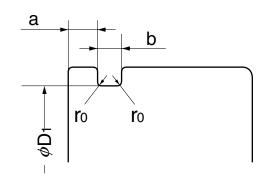
(1	/3)
١.	, ,,

Bearing	Snap	ring	Sı	nap ring groo	ove location 6	a	Snar	o ring	Fillet radius at snap ring	
outside diameter Nominal	•	groove diameter D1		Dimension series 18		series 19	Ŭ	e width b	groove bottom r o	Applicable snap ring
D -	Max	Min	Max	Min	Max	Min	Max	Min	Max	
22	20.8	20.5	_	-	1.05	0.9	1.05	0.8	0.2	NR1022
24	22.8	22.5	_	-	1.05	0.9	1.05	0.8	0.2	NR1024
28	26.7	26.4	_	-	1.3	1.15	1.2	0.95	0.25	NR1028
30 32 34	28.7 30.7 32.7	28.4 30.4 32.4	_ 1.3 1.3	- 1.15 1.15	1.3 - -	1.15 _ _ _	1.2 1.2 1.2	0.95 0.95 0.95	0.25 0.25 0.25	NR1030 NR1032 NR1034
37	35.7	35.4	1.3	1.15	1.7	1.55	1.2	0.95	0.25	NR1037
39	37.7	37.4	_	-	1.7	1.55	1.2	0.95	0.25	NR1039
40	38.7	38.4	1.3	1.15	–	–	1.2	0.95	0.25	NR1040
42	40.7	40.4	1.3	1.15	1.7	1.55	1.2	0.95	0.25	NR1042
44	42.7	42.4	1.3	1.15	-	_	1.2	0.95	0.25	NR1044
45	43.7	43.4	–	–	1.7	1.55	1.2	0.95	0.25	NR1045
47	45.7	45.4	1.3	1.15	1.7	1.55	1.2	0.95	0.25	NR1047
52	50.7	50.4	1.3	1.15	1.7	1.55	1.2	0.95	0.25	NR1052
55	53.7	53.4	–	–	1.7	1.55	1.2	0.95	0.25	NR1055

Remarks:

Chamfer at groove side of outer ring clears a fillet radius of:
0.3 mm in dimension series 18 up to and including D = 78 mm and in dimension series 19 up to and including D = 47 mm;

0.5 mm in dimension series 18 over D = 78 mm and in dimension series 19 over D = 47 mm


Table 4.5.1 Dimensions of Snap Ring Grooves for Bearing Dimension Series 18 and 19

10	\sim
17	/_ K N
/	\mathbf{v}{i}

Ui

nit:	mm	
ΙIIL.		4

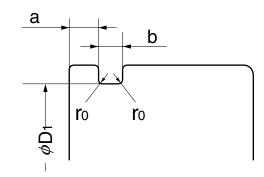
Bearing outside diameter Nominal	groove d	Snap ring groove diameter D1		nap ring gro	ove location 6		groove	o ring e width b	Fillet radius at snap ring groove bottom f 0	Applicable snap ring
D -	Max	Min	Max	Min	Max	Min	Max	Min	Max	
58	56.7	56.4	1.3	1.15	_	_	1.2	0.95	0.25	NR1058
62	60.7	60.3	-	-	1.7	1.55	1.2	0.95	0.25	NR1062
65	63.7	63.3	1.3	1.15	_	_	1.2	0.95	0.25	NR1065
68	66.7	66.3	–	–	1.7	1.55	1.2	0.95	0.25	NR1068
72	70.7	70.3	1.7	1.55	1.7	1.55	1.2	0.95	0.25	NR1072
78	76.2	75.8	1.7	1.55	–	–	1.6	1.3	0.4	NR1078
80	77.9	77.5	-	–	2.1	1.9	1.6	1.3	0.4	NR1080
85	82.9	82.5	1.7	1.55	2.1	1.9	1.6	1.3	0.4	NR1085
90	87.9	87.5	1.7	1.55	2.1	1.9	1.6	1.3	0.4	NR1090
95 100 105	92.9 97.9 102.6	92.5 97.5 102.1	1.7 1.7 –	1.55 1.55 –	_ 2.5 2.5	2.3 2.3	1.6 1.6 1.6	1.3 1.3 1.3	0.4 0.4 0.4	NR1095 NR1100 NR1105

Remarks:

Chamfer at groove side of outer ring clears a fillet radius of:

0.3 mm in dimension series 18 up to and including D = 78 mm and in dimension series 19 up to and including D = 47 mm;

0.5 mm in dimension series 18 over D = 78 mm and in dimension series 19 over D = 47 mm



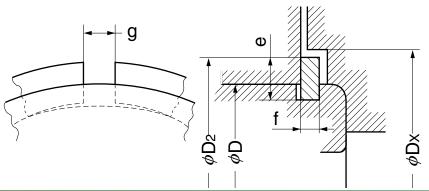
Back

(3	/3/
J	ı Oı

Bearing	Snap	Snap ring groove diameter D1		nap ring groo	ove location a	а	Snar	o ring	Fillet radius at snap ring	
outside diameter Nominal	Ŭ			series 18	Dimension	series 19	groove	e width	groove bottom r o	Applicable snap ring
D -	Max	Min	Max	Min	Max	Min	Max	Min	Max	
110 115 120	107.6 112.6 117.6	107.1 112.1 117.1	2.1 2.1 2.1	1.9 1.9 1.9	2.5 _ 3.3	2.3 - 3.1	1.6 1.6 1.6	1.3 1.3 1.3	0.4 0.4 0.4	NR1110 NR1115 NR1120
125 130 140	122.6 127.6 137.6	122.1 127.1 137.1	2.1 2.1 2.5	1.9 1.9 2.3	3.3 3.3 3.3	3.1 3.1 3.1	1.6 1.6 2.2	1.3 1.3 1.9	0.4 0.4 0.6	NR1125 NR1130 NR1140
145 150 165	142.6 147.6 161.8	142.1 147.1 161.3	2.5 3.3	- 2.3 3.1	3.3 3.3 3.7	3.1 3.1 3.5	2.2 2.2 2.2	1.9 1.9 1.9	0.6 0.6 0.6	NR1145 NR1150 NR1165
175 180 190 200	171.8 176.8 186.8 196.8	171.3 176.3 186.3 196.3	3.3 - 3.3 3.3	3.1 - 3.1 3.1	3.7 3.7 -	- 3.5 3.5 -	2.2 2.2 2.2 2.2	1.9 1.9 1.9 1.9	0.6 0.6 0.6 0.6	NR1175 NR1180 NR1190 NR1200

Remarks:

Chamfer at groove side of outer ring clears a fillet radius of:


0.3 mm in dimension series 18 up to and including D = 78 mm and in dimension series 19 up to and including D = 47 mm;

0.5 mm in dimension series 18 over D = 78 mm and in dimension series 19 over D = 47 mm

Table 4.5.2 Snap Ring Dimensions for Bearing Dimension Series 18 and 19

(1	/3)
١.	, .,

		Snap ring	dimensions			After snap		Applicable bearing			
Snap ring	Coation	haight A	Thiok	ness f	ring ı	mounting	Bearing	Dimens	ion series	Diameter of end cover	
No.	Section	height C	THICK	1622 1	Gap	Outside diameter of	outside diameter	18	19	bore Dx	
	Max	Min	Max	Min	g	snap ring D ₂ (Max)	Nominal D	Bearing bo	Bearing bore diameter d		
NR1022	2.0	1.85	0.7	0.6	2	24.8	22	-	10	25.5	
NR1024	2.0	1.85	0.7	0.6	2	26.8	24	-	12	27.5	
NR1028	2.05	1.9	0.85	0.75	3	30.8	28	-	15	31.5	
NR1030	2.05	1.9	0.85	0.75	3	32.8	30	-	17	33.5	
NR1032	2.05	1.9	0.85	0.75	3	34.8	32	20	-	35.5	
NR1034	2.05	1.9	0.85	0.75	3	36.8	34	22	-	37.5	
NR1037	2.05	1.9	0.85	0.75	3	39.8	37	25	20	40.5	
NR1039	2.05	1.9	0.85	0.75	3	41.8	39	-	22	42.5	
NR1040	2.05	1.9	0.85	0.75	3	42.8	40	28	-	43.5	
NR1042	2.05	1.9	0.85	0.75	3	44.8	42	30	25	45.5	
NR1044	2.05	1.9	0.85	0.75	4	46.8	44	32	-	47.5	
NR1045	2.05	1.9	0.85	0.75	4	47.8	45	-	28	48.5	
NR1047	2.05	1.9	0.85	0.75	4	49.8	47	35	30	50.5	
NR1052	2.05	1.9	0.85	0.75	4	54.8	52	40	32	55.5	
NR1055	2.05	1.9	0.85	0.75	4	57.8	55	–	35	58.5	

Remarks:

Chamfer at groove side of outer ring clears a fillet radius of:

0.3 mm in dimension series 18 up to and including D = 78 mm and in dimension series 19 up to and including D = 47 mm;

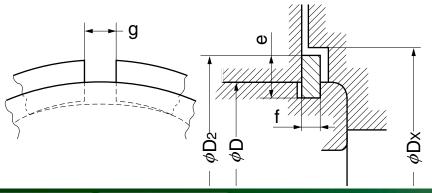

0.5 mm in dimension series 18 over D = 78 mm and in dimension series 19 over D = 47 mm

Table 4.5.2 Snap Ring Dimensions for Bearing Dimension Series 18 and 19

10	/ ^ \
(Z	(J)

		Snap ring	dimensions		Afte	After snap		Applicable bearing		
Snap ring	Coation	Coation baimbt O		Thickness f		mounting	Bearing	Dimension series		Diameter of end cover
No.	. Section retail 6		THICKI			Outside diameter of	outside diameter	18	19	bore
	Max	Min	Max	Min	g	snap ring D ₂ (Max)	Nominal D	Bearing bo		. Dx
NR1058 NR1062	2.05 2.05	1.9 1.9	0.85 0.85	0.75 0.75	4 4	60.8 64.8	58 62	45 —	_ 40	61.5 65.5
NR1065	2.05	1.9	0.85	0.75	4	67.8	65	50	-	68.5
NR1068 NR1072	2.05 2.05	1.9 1.9	0.85 0.85	0.75 0.75	5 5	70.8 74.8	68 72	_ 55	45 50	72 76
NR1078	3.25	3.1	1.12	1.02	5	82.7	78	60	-	84
NR1080 NR1085	3.25 3.25	3.1 3.1	1.12 1.12	1.02 1.02	5 5	84.4 89.4	80 85	_ 65	55 60	86 91
NR1090	3.25	3.1	1.12	1.02	5	94.4	90	70	65	96
NR1095 NR1100	3.25 3.25	3.1 3.1	1.12 1.12	1.02 1.02	5 5	99.4 104.4	95 100	75 80	_ 70	101 106
NR1105	4.04	3.89	1.12	1.02	5	110.7	105	-	75	112

Remarks:

Chamfer at groove side of outer ring clears a fillet radius of:

0.3 mm in dimension series 18 up to and including D = 78 mm and in dimension series 19 up to and including D = 47 mm;

0.5 mm in dimension series 18 over D = 78 mm and in dimension series 19 over D = 47 mm

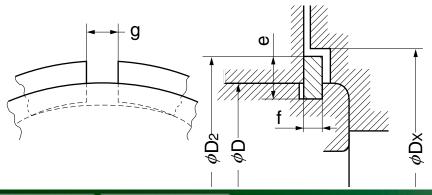


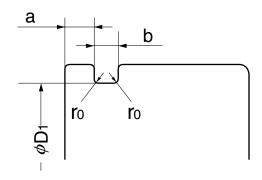
Table 4.5.2 Snap Ring Dimensions for Bearing Dimension Series 18 and 19

1	2	n	١.
l	J	/ J	"

- 1	In	ıt.	m	m
U	,,,	IL.	111	

		Snap ring	dimensions			After snap		Applicable bearing		
Snap ring	Soction	hoight A	Thick	Thickness f		mounting	Bearing	Dimension series		Diameter of
No.	Section	Section height C		1622 1	Gap	Outside diameter of	outside diameter	18	19	end cover bore
	Max	Min	Max	Min	g	snap ring D2 (Max)	Nominal D	Bearing bo	re diameter d	r Dx
NR1110 NR1115 NR1120	4.04 4.04 4.04	3.89 3.89 3.89	1.12 1.12 1.12	1.02 1.02 1.02	5 5 7	115.7 120.7 125.7	110 115 120	85 90 95	80 - 85	122
NR1125 NR1130 NR1140	4.04 4.04 4.04	3.89 3.89 3.89	1.12 1.12 1.7	1.02 1.02 1.6	7 7 7	130.7 135.7 145.7	125 130 140	100 105 110	90 95 100	137
NR1145 NR1150 NR1165	4.04 4.04 4.85	3.89 3.89 4.7	1.7 1.7 1.7	1.6 1.6 1.6	7 7 7	150.7 155.7 171.5	145 150 165	- 120 130	105 110 120	157
NR1175 NR1180 NR1190 NR1200	4.85 4.85 4.85 4.85	4.7 4.7 4.7 4.7	1.7 1.7 1.7 1.7	1.6 1.6 1.6 1.6	10 10 10 10	181.5 186.5 196.5 206.5	175 180 190 200	140 - 150 160	130 140 –	183 188 198 208

Remarks:


Chamfer at groove side of outer ring clears a fillet radius of:

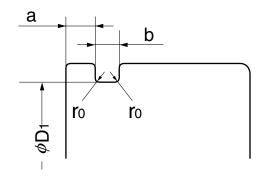
0.3 mm in dimension series 18 up to and including D = 78 mm and in dimension series 19 up to and including D = 47 mm;

0.5 mm in dimension series 18 over D = 78 mm and in dimension series 19 over D = 47 mm

11	111	
U	/4)	

Bearing	g Snaj	Snap ring		nap ring groo	ove location 8	l	Snap	ring	Fillet radius at snap ring	
outside diamete Nomina	er [diameter) 1	Diameter	series 0		Diameter series 2, 3, 4		groove width b		Applicable snap ring
D	Max	Min	Max	Min	Max	Min	Max	Min	Max	
13	12.04	11.91	_	-	1.1	0.95	1.05	8.0	0.2	NR 13
16 19 22	15.16 18.25 21.11	15.04 18.1 20.95	- 1.73 1.73	_ 1.55 1.55	1.2 1.73 1.73	1.05 1.55 1.55	1.05 1.05 1.05	0.8 0.8 0.8	0.2 0.2 0.2	NR 16 NR 19 NR 22
24 26 28	23 25.15 26.7	22.85 25 26.4	1.73 1.73 1.73	1.55 1.55 1.55	1.73 1.73 1.73	1.55 1.55 1.55	1.05 1.05 1.2	0.8 0.8 0.95	0.2 0.2 0.25	NR 24 NR 26 NR 28
30 32 35	28.17 30.15 33.17	27.91 29.9 32.92	2.06 2.06	- 1.9 1.9	2.06 2.06 2.06	1.9 1.9 1.9	1.65 1.65 1.65	1.35 1.35 1.35	0.4 0.4 0.4	NR 30 NR 32 NR 35
37 40 42	34.77 38.1 39.75	34.52 37.85 39.5	- - 2.06	- - 1.9	2.06 2.06 2.06	1.9 1.9 1.9	1.65 1.65 1.65	1.35 1.35 1.35	0.4 0.4 0.4	NR 37 NR 40 NR 42

- 1. These dimensions are not applied to dimension series 00, 82 and 83.
- 2. Chamfer at groove side of outer ring clears a fillet radius of:
 0.3 mm in diameter series 0 up to and including D = 35 mm,
 0.5 mm in diameter series 0 over D = 35 mm and for all diameters in diameter series 2, 3, and 4

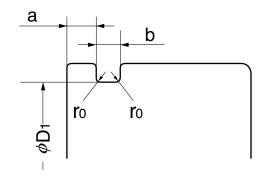


(2/4)	(2	/4)
-------	----	----	---

- 1 1	n	1†•	m	m
U	11	IL.		

Bearing	Snap) rina	S	nap ring groc	ve location 2	ı	Snap	rina	Fillet radius at snap ring	
outside diameter Nominal	groove diameter D1		Diameter	Diameter series 0		Diameter series 2, 3, 4		groove width b		Applicable snap ring
D -	Max Min		Max	Min	Max	Min	Max	Min	Max	
44	41.75	41.5	2.06	1.9	_	_	1.65	1.35	0.4	NR 44
47	44.6	44.35	2.06	1.9	2.46	2.31	1.65	1.35	0.4	NR 47
50	47.6	47.35	–	–	2.46	2.31	1.65	1.35	0.4	NR 50
52	49.73	49.48	2.06	1.9	2.46	2.31	1.65	1.35	0.4	NR 52
55	52.6	52.35	2.08	1.88	_	_	1.65	1.35	0.4	NR 55
56	53.6	53.35	-	-	2.46	2.31	1.65	1.35	0.4	NR 56
58	55.6	55.35	2.08	1.88	2.46	2.31	1.65	1.35	0.4	NR 58
62	59.61	59.11	2.08	1.88	3.28	3.07	2.2	1.9	0.6	NR 62
65	62.6	62.1	-	-	3.28	3.07	2.2	1.9	0.6	NR 65
68	64.82	64.31	2.49	2.29	3.28	3.07	2.2	1.9	0.6	NR 68
72	68.81	68.3	-	_	3.28	3.07	2.2	1.9	0.6	NR 72
75	71.83	71.32	2.49	2.29	3.28	3.07	2.2	1.9	0.6	NR 75

- 1. These dimensions are not applied to dimension series 00, 82 and 83.
- 2. Chamfer at groove side of outer ring clears a fillet radius of:
 0.3 mm in diameter series 0 up to and including D = 35 mm,
 0.5 mm in diameter series 0 over D = 35 mm and for all diameters in diameter series 2, 3, and 4

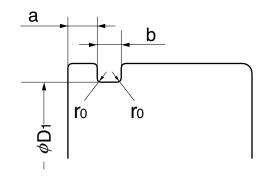


10	11	`
J.	/4)

- 1 1	nit:	m	m
\mathbf{U}	IIIL.		

Bearing	Sna	p ring	S	nap ring groo	ove location a	l	Snar	ring	Fillet radius at snap ring	
outside diameter Nominal	groove diameter		Diameter	Diameter series 0		Diameter series 2, 3, 4		groove width b		Applicable snap ring
D ·	Max	Min	Max	Min	Max	Min	Max	Min	Max	
80	76.81	76.3	2.49	2.29	3.28	3.07	2.2	1.9	0.6	NR 80
85	81.81	81.31	-	_	3.28	3.07	2.2	1.9	0.6	NR 85
90	86.79	86.28	2.87	2.67	3.28	3.07	3	2.7	0.6	NR 90
95	91.82	91.31	2.87	2.67	_	_	3	2.7	0.6	NR 95
100	96.8	96.29	2.87	2.67	3.28	3.07	3	2.7	0.6	NR100
110	106.81	106.3	2.87	2.67	3.28	3.07	3	2.7	0.6	NR110
115	111.81	111.3	2.87	2.67	-	_	3	2.7	0.6	NR115
120	115.21	114.71	-	_	4.06	3.86	3.4	3.1	0.6	NR120
125	120.22	119.71	2.87	2.67	4.06	3.86	3.4	3.1	0.6	NR125
130	125.22	124.71	2.87	2.67	4.06	3.86	3.4	3.1	0.6	NR130
140	135.23	134.72	3.71	3.45	4.9	4.65	3.4	3.1	0.6	NR140
145	140.23	139.73	3.71	3.45	–	–	3.4	3.1	0.6	NR145

- 1. These dimensions are not applied to dimension series 00, 82 and 83.
- 2. Chamfer at groove side of outer ring clears a fillet radius of: 0.3 mm in diameter series 0 up to and including D = 35 mm, 0.5 mm in diameter series 0 over D = 35 mm and for all diameters in diameter series 2, 3, and 4



1	1	11	١
l	4	/4	•

Bearing	Sna	p ring	Sı	nap ring groo	ve location 2	l	Snap ring		Fillet radius at snap ring		
outside diameter Nominal	groove diameter D1		Diameter	Diameter series 0		Diameter series 2, 3, 4		groove width b		Applicable snap ring	
D	Max	Min	Max	Min	Max	Min	Max	Min	Max		
150	145.24	144.73	3.71	3.45	4.9	4.65	3.4	3.1	0.6	NR150	
160	155.22	154.71	3.71	3.45	4.9	4.65	3.4	3.1	0.6	NR160	
170	163.65	163.14	3.71	3.45	5.69	5.44	3.8	3.5	0.6	NR170	
180	173.66	173.15	3.71	3.45	5.69	5.44	3.8	3.5	0.6	NR180	
190	183.64	183.13	_	_	5.69	5.44	3.8	3.5	0.6	NR190	
200	193.65	193.14	5.69	5.44	5.69	5.44	3.8	3.5	0.6	NR200	
210	203.6	203.1	5.69	5.44	_	_	3.8	3.5	1	NR210	
215	208.6	208.1	-	_	5.69	5.44	3.8	3.5	1	NR215	
225	217	216.5	6.5	6.2	6.5	6.2	4.9	4.5	1	NR225	
230	222	221.5	-	-	6.5	6.2	4.9	4.5	1	NR230	
240	232	231.5	6.5	6.2	6.5	6.2	4.9	4.5	1	NR240	
250	242	241.5	-	-	6.5	6.2	4.9	4.5	1	NR250	

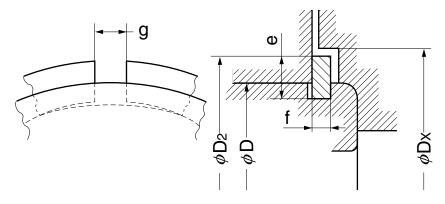
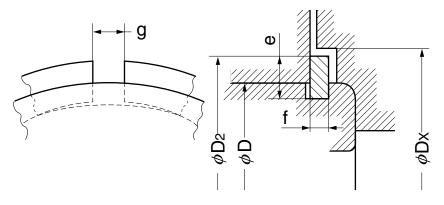

- 1. These dimensions are not applied to dimension series 00, 82 and 83.
- 2. Chamfer at groove side of outer ring clears a fillet radius of:
 0.3 mm in diameter series 0 up to and including D = 35 mm,
 0.5 mm in diameter series 0 over D = 35 mm and for all diameters in diameter series 2, 3, and 4

Table 4.5.4 Snap Ring Dimensions for Bearing Diameter Series 0, 2, 3 and 4

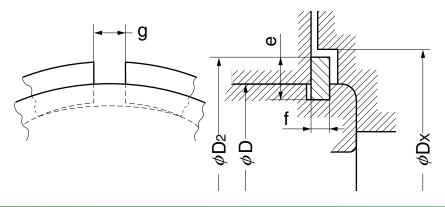
(1	/4)
----	-----

		Snap ring d	imensions		Afte	er snap .	Applicable bearing					Diameter of
Snap ring	Coation	haiseht O	Thiales	f	ring r	ring mounting		Dimension series				end cover
No.	Section height C		Thickness † –		Gap	Gar diameter of	outside diameter	0	2	3	4	bore Dx
	Max	Min	Max	Min	g	snap ring D ₂ (Max)	Nominal D	Bearing bore diameter d		r	(Min)	
NR 13	1.15	1.0	0.7	0.6	3	14.3	13	_	4	3	_	14.5
NR 16 NR 19 NR 22	1.65 1.65 2.00	1.5 1.5 1.85	0.7 0.7 0.7	0.6 0.6 0.6	3 3 3	18.5 21.5 25.1	16 19 22	- 7 8	5 6 7	4 5 6	- - -	19 22 25.5
NR 24 NR 26 NR 28	2.00 2.00 2.05	1.85 1.85 1.90	0.7 0.7 0.85	0.6 0.6 0.75	3 3 3	27 29.2 30.8	24 26 28	9 10 12	8 9 -	- 7 8	- - -	27.5 30 31.5
NR 30 NR 32 NR 35	3.25 3.25 3.25	3.1 3.1 3.1	1.12 1.12 1.12	1.02 1.02 1.02	3 3 3	34.7 36.7 39.7	30 32 35	– 15 17	10 12 15	9 _ 10	8 9 -	35.5 37.5 40.5
NR 37 NR 40 NR 42	3.25 3.25 3.25	3.1 3.1 3.1	1.12 1.12 1.12	1.02 1.02 1.02	3 3 3	41.3 44.6 46.3	37 40 42	- - 20	– 17 –	12 - 15	10 - 12	42 45.5 47


- 1. These dimensions are not applied to dimension series 00, 82 and 83.
- 2. Chamfer at groove side of outer ring clears a fillet radius of:
 - 0.3 mm in diameter series 0 up to and including D = 35 mm,
 - 0.5 mm in diameter series 0 over D = 35 mm and for all diameters in diameter series 2, 3, and 4

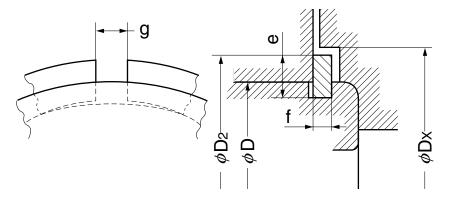
Unit: mm 📤

		Snap ring di	imensions		Afte	After snap		Applicable bearing				
Snap ring	0			£		ring mounting		Dimension series				Diameter of end cover
No.	Section	Section height e Thickness f		Gap	Outside Gap diameter of		0	2	3	4	bore Dx	
	Max	Min	Max	Min	g	· diamotor or		Bearing bore diameter d				(Min)
NR 44	3.25	3.1	1.12	1.02	3	48.3	44	22	-	-	_	49
NR 47	4.04	3.89	1.12	1.02	4	52.7	47	25	20	17	_	53.5
NR 50	4.04	3.89	1.12	1.02	4	55.7	50	–	22	-	_	56.5
NR 52	4.04	3.89	1.12	1.02	4	57.9	52	28	25	20	15	58.5
NR 55	4.04	3.89	1.12	1.02	4	60.7	55	30	-	-	-	61.5
NR 56	4.04	3.89	1.12	1.02	4	61.7	56	-	-	22	-	62.5
NR 58	4.04	3.89	1.12	1.02	4	63.7	58	32	28	–	_	64.5
NR 62	4.04	3.89	1.7	1.6	4	67.7	62	35	30	25	17	68.5
NR 65	4.04	3.89	1.7	1.6	4	70.7	65	-	32	–	_	71.5
NR 68	4.85	4.7	1.7	1.6	5	74.6	68	40	_	28	_	76
NR 72	4.85	4.7	1.7	1.6	5	78.6	72	-	35	30	20	80
NR 75	4.85	4.7	1.7	1.6	5	81.6	75	45	_	32	_	83

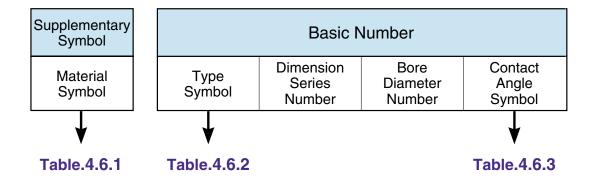

- 1. These dimensions are not applied to dimension series 00, 82 and 83.
- 2. Chamfer at groove side of outer ring clears a fillet radius of:
 - 0.3 mm in diameter series 0 up to and including D = 35 mm,
 - 0.5 mm in diameter series 0 over D = 35 mm and for all diameters in diameter series 2, 3, and 4

(3)	/4)
	, –	,

		Snap ring dimensions After snap Applicable bearing				Diameter of						
Snap ring	0 1 1	hadaba O	Thiston	f		mounting	Bearing		Dimensio	n series		Diameter of end cover
No.	Section	height C	Thickn	iess i	Gap	Outside diameter of	outside diameter	0	2	3	4	bore Dx
	Max	Min	Max	Min	g	snap ring D ₂ (Max)	Nominal D	Вє	earing bor d		er	(Min)
NR 80	4.85	4.7	1.7	1.6	5	86.6	80	50	40	35	25	88
NR 85 NR 90	4.85 4.85	4.7 4.7	1.7 2.46	1.6 2.36	5 5	91.6 96.5	85 90	_ 55	45 50	40	30	93 98
NR 95 NR100 NR110	4.85 4.85 4.85	4.7 4.7 4.7	2.46 2.46 2.46	2.36 2.36 2.36	5 5 5	101.6 106.5 116.6	95 100 110	60 65 70	_ 55 60	- 45 50	- 35 40	103 108 118
NR115 NR120 NR125	4.85 7.21 7.21	4.7 7.06 7.06	2.46 2.82 2.82	2.36 2.72 2.72	5 7 7	121.6 129.7 134.7	115 120 125	75 - 80	– 65 70	_ 55 _	_ 45 _	123 131.5 136.5
NR130 NR140 NR145	7.21 7.21 7.21	7.06 7.06 7.06	2.82 2.82 2.82	2.72 2.72 2.72	7 7 7	139.7 149.7 154.7	130 140 145	85 90 95	75 80 –	60 65 –	50 55 –	141.5 152 157


- 1. These dimensions are not applied to dimension series 00, 82 and 83.
- 2. Chamfer at groove side of outer ring clears a fillet radius of:
 - 0.3 mm in diameter series 0 up to and including D = 35 mm,
 - 0.5 mm in diameter series 0 over D = 35 mm and for all diameters in diameter series 2, 3, and 4

(4	./.	4	١	
		•	,	


		Snap ring dimensions			Afte	er snap .		Applic	able bear	ing		Diameter of
Snap ring	Continu	a a i a la t	Thiston	f		nounting	Bearing		Dimensio	on series		Diameter of end cover
No.	Section h	neigni e	Thickn	less i	Gap	Outside diameter of	outside diameter	0	2	3	4	bore Dx
	Max	Min	Max	Min	g	snap ring D ₂ (Max)	Nominal D	Ве	earing boo		er	(Min)
NR150	7.21	7.06	2.82	2.72	7	159.7	150	100	85	70	60	162
NR160	7.21	7.06	2.82	2.72	7	169.7	160	105	90	75	65	172
NR170	9.6	9.45	3.1	3	10	182.9	170	110	95	80	–	185
NR180	9.6	9.45	3.1	3	10	192.9	180	120	100	85	70	195
NR190	9.6	9.45	3.1	3	10	202.9	190	_	105	90	75	205
NR200	9.6	9.45	3.1	3	10	212.9	200	130	110	95	80	215
NR210	9.6	9.45	3.1	3	10	222.8	210	140	-	-	85	225
NR215	9.6	9.45	3.1	3	10	227.8	215	-	120	100	-	230
NR225	10	9.85	3.5	3.4	10	237	225	150	-	105	90	240
NR230	10	9.85	3.5	3.4	10	242	230	_	130	-	–	245
NR240	10	9.85	3.5	3.4	10	252	240	160	-	110	95	255
NR250	10	9.85	3.5	3.4	10	262	250	_	140	-	100	265

- 1. These dimensions are not applied to dimension series 00, 82 and 83.
- 2. Chamfer at groove side of outer ring clears a fillet radius of:
 - 0.3 mm in diameter series 0 up to and including D = 35 mm,
 - 0.5 mm in diameter series 0 over D = 35 mm and for all diameters in diameter series 2, 3, and 4

4.6 Nachi Bearing Numbers

Fig 4.8 NACHI Bearing Prefixes and Suffixes

Note 1:

Denotes polyamide cages for angular contact ball bearing of contact angle symbol C.

- 1. Symbol in parentheses can be omitted.
- 2. Code marked with "*" is not marked on bearing.
- 3. Bearing modification symbol NR is marked without R on bearing.

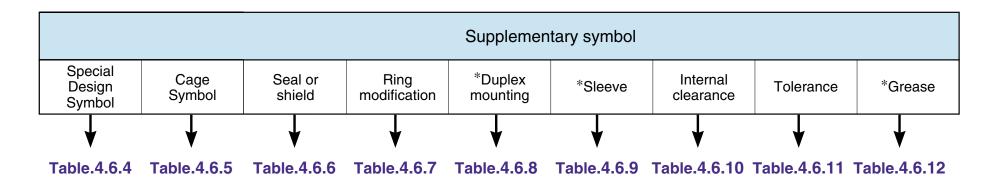


Table 4.6.1 Material Symbol

Prefix	Description
B–	Case hardened steel
C-	Case hardened steel
D-	Case hardened steel
H–	High speed steel
S-	Stainless steel

Table 4.6.8 *Duplex mounting

Suffix	Description
DB	Back-to-back mounting
DF	Face-to-face mounting
DT	Tandem mounting
KB	DB mounting with spacer to outer ring
+ α	Spacer (α is nominal width in mm)
U DU	Flush ground angular contact ball bearing

Table 4.6.2 Type Symbol

Prefix	Description
N	
NU	
NF	
NJ	
NP	Cylindrical roller bearings
NUP	
NH	
NNU	
NN	
R	Cylindrical roller bearing roller assembly and outer or inner ring

Table 4.6.7 Ring modification

Suffix	Description
K	Tapered bore: 1/12 taper on bearing bore
K30	Tapered bore: 1/30 taper on bearing bore
N	Snap ring groove on outer ring without snap ring
NR	Snap ring on outer ring

Table 4.6.4 Special Design Symbol

Suffix	Description
А	Inner ring, bearing width variation for Tapered roller bearing
Е	Roller bearing design change
J	Tapered roller bearing rings interchangeable
S26	Heat stabilized
S28	Heat stabilized
W20	Oil holes in outer ring
W33	Oil holes and groove in outer ring
E2	Spherical roller bearing with machined cage
EX	High capacity spherical roller bearing
A2X	High speed spherical roller bearing
AEX	High speed and high capacity spherical roller bearing
V	Special design for vibrating machine

Table 4.6.5 Cage Symbol

Suffix	Description
F	Machined mild steel cage
G	Non-metalic cage
L	Machined light alloy cage
MY	Machined bronze cage
V	No cage
Υ	Pressed non-ferrous metal cage (Note 1)

Table 4.6.6 Seal or shield

Suffix		Description
ZE Z		Shield one side
ZZE	ZZ	Shield both sides
NKE	NK	Labyrinth seal one side
-2NKE	-2NK	Labyrinth seal both sides
NSE	NSL	Contact seal one side
-2NSE	-2NSL	Contact seal both sides

Table 4.6.3 Contact Angle Symbol

Suffix	Description				
С	Cinale very Anaryley	Nominal contact angle over 10° under 22° (standard 15°)			
(A)	Single row Angular contact ball bearings	Nominal contact angle over 22° under 32° (standard 30°)			
В		Nominal contact angle over 32° under 45° (standard 40°)			
D	Tapered roller bearings	Nominal contact angle over 24° under 32°			
С		Nominal contact angle over 17° under 24°			

Table 4.6.10 Internal clearance

Suffix	Descri	otion	
C1	Radial clearance C1		
C2	Radial clearance C2		
(CN)	Normal Radial clearance		
C3	Radial clearance C3		
C4	Radial clearance C4		
C5	Radial clearance C5		
C1P	Radial clearance C1P	(Note 2)	
C2P	Radial clearance C2P	(Note 2)	
:	:		
C6P	Radial clearance C6P	(Note 2)	
C9na	Cylindrical roller bearing	(C9)	(Note 3)
C1na	Cylindrical roller bearing	(C1)	(Note 3)
C2na	Cylindrical roller bearing	(C2)	(Note 3)
Cna	Cylindrical roller bearing	(Normal)	(Note 3)
C3na	Cylindrical roller bearing	(C3)	(Note 3)
C4na	Cylindrical roller bearing	(C4)	(Note 3)
C5na	Cylindrical roller bearing	(C5)	(Note 3)
СМ	Electric motor bearing rad (of deep groove ball bear non-interchangeable cylin	ing and of	
СТ	Radial clearance for elec (interchangeable cylindric		•

Note 2: Extra small ball bearing and miniature ball bearing

Note 3: Non-interchangeable clearance

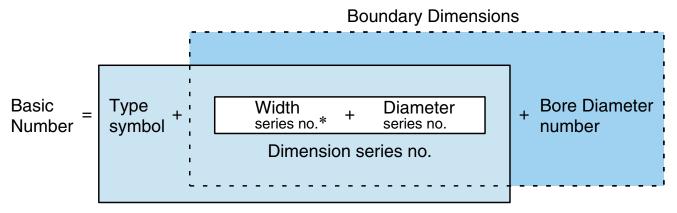
Table 4.6.9 *Sleeve

Suffix	Description
+H	Adapter sleeve
+AH	Withdrawal sleeve

Table 4.6.11 Tolerance

Suffix	Description
(0)	JIS class 0 (ISO Normal class)
P6	JIS class 6 (ISO class 6)
P6X	JIS class 6X
P5	JIS class 5 (ISO class 5)
P4	JIS class 4 (ISO class 4)
P2	JIS class 2 (ISO class 2)
UP	NACHI class UP

Table 4.6.12 *Grease

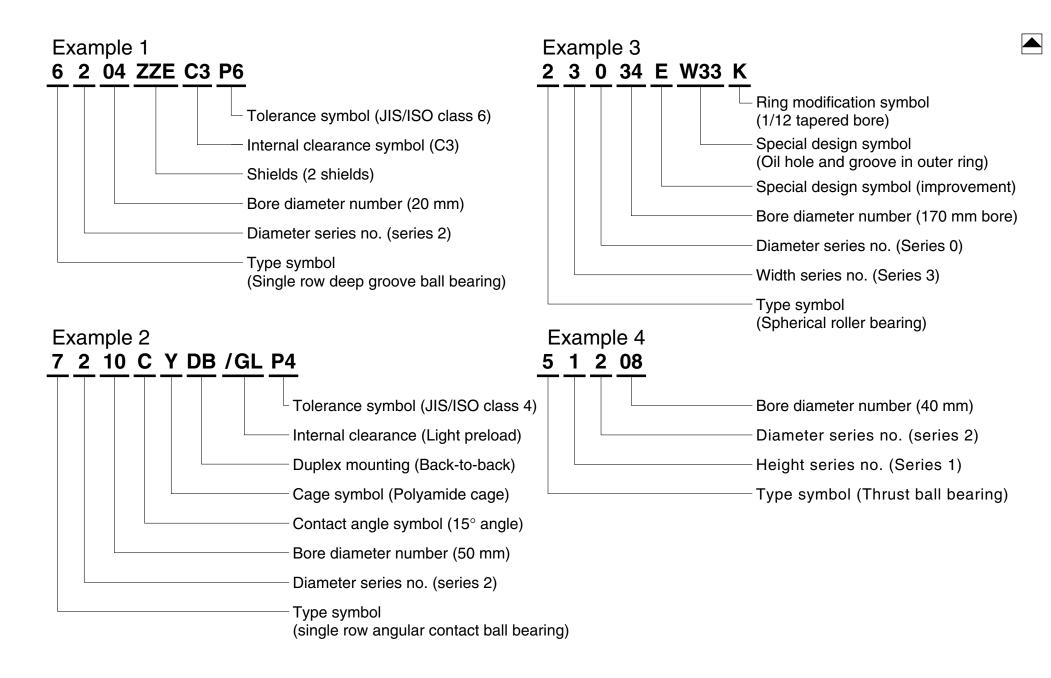

Suffix	Description
ADC	Shell Andoc C
AV2	Shell Alvania grease 2S
BC325	Esso Beacon 325
MTSRL	Multemp SRL

NACHI Rolling Contact Bearing Numbers ••• Examples

The NACHI part number for rolling contact bearings consists of the basic number and supplementary codes. The part number defines the bearing configuration, tolerance, general boundary dimensions, and other specifications.

NACHI uses supplemental prefix and suffix symbols as shown in Fig. 4.8. The NACHI basic number consists of the following:

Bearing series symbol


* Height series number for thrust bearings.

Bore Diameter Number

Bore (mm)	4	5	6	7	8	9	10	12	15	17	20	25	••••	480	500	530	
Bore diameter number	4	5	6	7	8	9	00	01	02	03	04	05		96	/500	/530	
Remarks	Bore Diameter							_				bore	dia.)	/5	/bore	e dian	neter

5. Accuracy of Bearings

Introduction

5.1 Tolerance Values for Radial Bearings (Except Tapered Roller Bearings)

- Table 5.1.1 Tolerance Values of Inner Ring and of Outer Ring Width
- Table 5.1.2 Tolerance Values of Outer Ring

5.2 Tolerance Values for Metric Tapered Roller Bearings

- Table 5.2.1 Tolerance Values of Inner Ring
- Table 5.2.2 Tolerance Values of Outer Ring
- Table 5.2.3 Deviations of Single Ring Width, Bearing Width and Duplex/Stack Mounted Bearing Width

5.3 Tolerance Values for Thrust Ball Bearings

- Table 5.3.1 Tolerance Values of Shaft Washer Bore Diameter
- Table 5.3.2 Tolerance Values of Housing Washer Outside Diameter
- Table 5.3.3 Height Tolerances of Thrust Ball Bearings (with Flat Seat) and Center Washers (Class 0)

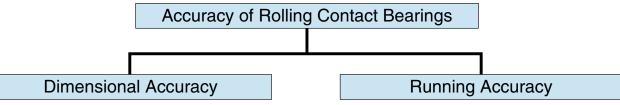
5.4 Tolerance Values of Spherical Roller Thrust Bearings (Class 0)

- Table 5.4.1 Tolerance Values of Inner Rings
- Table 5.4.2 Tolerance Values of Outer Rings

5.5 Tolerance Values of Tapered Roller Bearings - Inch Series

- Table 5.5.1 Tolerance of Inner Ring (Cone) Bore
- Table 5.5.2 Tolerance of Outer Ring (Cup) Outside Diameter
- Table 5.5.3 Tolerance of Bearing Width and Duplex/Stack Mounted Bearing Width
- Table 5.5.4 Radial Runout of Assembled Bearing Inner Ring and Outer Ring

5.6 Chamfer Dimensions


5.7 Tapered Bores

5. Accuracy of Rolling Contact Bearings

The tolerance of rolling contact bearings includes dimensional and running accuracy. According to JIS (1), tolerance is classified into 6 classes; class 0, 6, 6X, 5, 4 and 2 with accuracy ascending from class 0 to 2.

Applicable tolerance classes to individual bearing types and applicable standards are shown in the next page.

Mounting element tolerances

- Bearing bore, outside dia., width
- Width variation
- Inscribed and circumscribed circle diameter of rollers
- Chamfer dimensions
- Tapered bore

Back

Dynamic elements

- Radial run-out of rings
- Axial run-out of rings
- Side face run-out of rings
- Tolerance of variation outer ring raceway dia. to outside dia.

Bearing types and tolerance classes

Bearing Type	Bearing Type		Т	olerance cla	ass		Related Standard	Refer Tab		
Deep groove Ball Be	Deep groove Ball Bearings			JIS 5	JIS 4	JIS 2	JIS B 1514	5.1.1	5.1.2	
Angular Contact Ball Bear	ings	JIS 0	JIS 6	JIS 5	JIS 4	JIS 2				
Self-aligning Ball Bearings	3	JIS 0	_	_	_	_	JIS B 1514	E 4 4	E 1 0	
Cylindrical Roller Bearings	3	JIS 0	JIS 6	JIS 5	JIS 4	JIS 2	JIS B 1514	5.1.1	5.1.2	
Spherical Roller (Radial) E	Bearings	JIS 0	_	_	_	_				
Tapered Roller Bearings	Metric Series	JIS 0 JIS 6X	JIS 6	JIS 5	JIS 4	_	JIS B 1514	5.2.1 5.2.3	5.2.2	
rapered holler bearings	Inch Series	CLASS 4	CLASS 2	CLASS 3	CLASS 0	CLASS 00	ANSI / ABMA 19	5.5.1 5.5.3	5.5.2 5.5.4	
Thrust, Ball Bearings		JIS 0	JIS 6	JIS 5	JIS 4	_	JIS B 1514	5.3.1 5.3.3	5.3.2	
Spherical Roller Thrust Be	earings	JIS 0	_	_	_	_	JIS B 1514	5.4.1	5.4.2	

Metric Radial Bearings (Except Tapered Roller Bearings) Class Comparison

	ISC) (2)	NORMAL CLASS	CLASS 6	CLASS 5	CLASS 4	CLASS 2	ISO 492 ISO 582	-
Comparative	DII	1 (3)	P0	P6	P5	P4	P2	DIN 620	-
Classes	ANSI (4) /	Ball Bearings	ABEC 1	ABEC 3	ABEC 5	ABEC 7	ABEC 9	ANSI / ABMA 20	_
	ABMA (5)	Roller Bearings	RBEC 1	RBEC 3	RBEC 5	_	_	ANSI / ABMA 20	_

⁽¹⁾ Japanese Industrial Standard (2) International Organization for Standardization (3) German Industrial Standards

Remarks: For tolerances of chamfer dimensions, see Table 5.6; for accuracy of tapered bore, see Table 5.7.

⁽⁴⁾ American National Standards Institute(5) American Bearing Manufacturers Association

(1/4)

Unit: μ m

			Bearing with cylindrical bore												
Bearing diameter I				Sing	e plane	mean be Δd	ore dian	neter dev			De	viation of	a single $\triangle ds$		ameter (2)
d (mn	n)	Cla	0	Ola	0	Ola	F	Olas	1	Class 0		Clas		Ola	0
(11111)	'')	Cia	Class 0		Class 6		Class 5		Class 4		Class 2		Diameter series 0,1,2,3,4		ss 2
Over	Incl.	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low
0.6 ⁽¹⁾ 2.5 10	2.5 10 18	0 0 0	- 8 - 8 - 8	0 0 0	- 7 - 7 - 7	0 0 0	- 5 - 5 - 5	0 0 0	- 4 - 4 - 4	0 0 0	-2.5 -2.5 -2.5	0 0 0	- 4 - 4 - 4	0 0 0	-2.5 -2.5 -2.5
18 30 50	30 50 80	0 0 0	- 10 - 12 - 15	0 0 0	- 8 -10 -12	0 0 0	- 6 - 8 - 9	0 0 0	- 5 - 6 - 7	0 0 0	-2.5 -2.5 -4	0 0 0	- 5 - 6 - 7	0 0 0	-2.5 -2.5 -4
80 120 150	120 150 180	0 0 0	- 20 - 25 - 25	0 0 0	-15 -18 -18	0 0 0	-10 -13 -13	0 0 0	- 8 -10 -10	0 0 0	-5 -7 -7	0 0 0	- 8 -10 -10	0 0 0	-5 -7 -7
180 250 315	250 315 400	0 0 0	- 30 - 35 - 40	0 0 0	-22 -25 -30	0 0 0	-15 -18 -23	0 _ _	-12 - -	<u>0</u> _	-8 - -	0 _ _	-12 - -	<u>0</u> _	-8 - -
400 500 630	500 630 800	0 0 0	- 45 - 50 - 75	0 0 -	-35 -40 -				_ _ _		- - -			=	- - -
800 1000 1250 1600	1000 1250 1600 2000	0 0 0	-100 -125 -160 -200		= = =		=		= =		=		_ _ _ _	=	= = =

Notes: (1) This diameter is included in this group.

- (2) Applies to bearings with cylindrical bore.
- (3) Width deviation and variation of outer ring are the same with of inner ring. Outer ring width variation of classes 5, 4 and 2 are listed in Table 5.1.2.
- (4) Applies to the rings of single bearings made for paired of stack mounting.
- (5) Applies ro radial ball bearings such as deep groove ball bearing, angular contact ball bearings.

(2/4)

Unit: μ m

Bearing																			
Rearing	Bearing with cylindrical bor												ore						
diameter N			Bore	e diame	eter var		n a sin d_p	gle radi	al plane	(2)		Main bore diameter variation (2) Vd_{mp}							
d			Class C)		Class 6		Class 5 Class 4											
(mm))	Dian	neter s	eries	Diameter series			Diamete	Diameter series Diameter se		r series	Class 2	Class 0	Class 6	Class 5	Class 4	Class 2		
		7,8,9	0,1	2,3,4	7,8,9	0,1	2,3,4	7,8,9	0,1,2,3,4	7,8,9 (0,1,2,3,4								
Over	Incl.		Max			Max		M	ax	Max		Max	Max	Max	Max	Max	Max		
0.6 ⁽¹⁾ 2.5 10	2.5 10 18	10 10 10	8 8 8	6 6	9 9 9	7 7 7	5 5 5	5 5 5	4 4 4	4 4 4	3 3 3	2.5 2.5 2.5	6 6	5 5 5	3 3 3	2 2 2	1.5 1.5 1.5		
18 30 50	30 50 80	13 15 19	10 12 19	8 9 11	10 13 15	8 10 15	6 8 9	6 8 9	5 6 7	5 6 7	4 5 5	2.5 2.5 4	8 9 11	6 8 9	3 4 5	2.5 3 3.5	1.5 1.5 2		
80 120 150	120 150 180	25 31 31	25 31 31	15 19 19	19 23 23	19 23 23	11 14 14	10 13 13	8 10 10	8 10 10	6 8 8	5 7 7	15 19 19	11 14 14	5 7 7	4 5 5	2.5 3.5 3.5		
180 250 315	250 315 400	38 44 50	38 44 50	23 26 30	28 31 38	28 31 38	17 19 23	15 18 23	12 14 18	12 - -	9 - -	8 _ _	23 26 30	17 19 23	8 9 12	6 _ _	4 _ _		
400 500 630	500 630 800	56 63 –	56 63 –	34 38 -	44 50 –	44 50 –	26 30 –		_ _ _	_ _ _	_ _ _	_ _ _	34 38 -	26 30 -	=	_ _ _	_ _ _		
800	1000 1250	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		
1000 1250 1600	1600 2000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		

Notes: (1) This diameter is included in this group.

- (2) Applies to bearings with cylindrical bore.
- (3) Width deviation and variation of outer ring are the same with of inner ring. Outer ring width variation of classes 5, 4 and 2 are listed in Table 5.1.2.
- (4) Applies to the rings of single bearings made for paired of stack mounting.
- (5) Applies ro radial ball bearings such as deep groove ball bearing, angular contact ball bearings.

(3/4)

Unit: μ m

Bearing		De	eviation o	f a singl	le inner		or ΔC_s		outer ring	g width)	(2)	Inner		er) ring v s (or V_0	width va	riation
diameter I	Nominal			Single I	pearing		Paired or stack mounted bearing (4)					Inner ring (or outer ring) (3)			nner rin	rina
(mn	n)		ass 0 ass 6	Clas Clas		Class 2			ss 0 ss 6		ss 5 ss 4	<u> </u>			Class 4	
Over	Incl.	High	Low	High	Low	High	Low	High	Low	High	Low	Max	Max	Max	Max	Max
0.6(1) 2.5 10	2.5 10 18	0 0 0	- 40 - 120 - 120	0 0 0	- 40 - 40 - 80	0 0 0	- 40 - 40 - 80	_ 0 0	- -250 -250	0 0 0	-250 -250 -250	12 15 20	12 15 20	5 5 5	2.5 2.5 2.5	1.5 1.5 1.5
18 30 50	30 50 80	0 0 0	- 120 - 120 - 150	0 0	-120 -120 -150	0 0 0	-120 -120 -150	0	-250 -250 -380	0	-250 -250 -250	20 20 25	20 20 25	5 5 6	2.5 3 4	1.5 1.5 1.5
80 120 150	120 150 180	0 0 0	- 200 - 250 - 250	0 0	-200 -250 -250	0 0 0	-200 -250 -250	0	-380 -500 -500	0 0	-380 -380 -380	25 30 30	25 30 30	7 8 8	4 5 5	2.5 2.5 4
180 250 315	250 315 400	0 0 0	- 300 - 350 - 400	0 0 0	-300 -350 -400	<u>0</u> _	-300 - -	0	-500 -500 -630	0 0 0	-500 -500 -630	30 35 40	30 35 40	10 13 15	6 - -	5 - -
400 500 630	500 630 800	0 0 0	- 450 - 500 - 750	- - -		_ _ _	_ _ _			_ _ _	=	50 60 70	45 50 –	- - -	_ _ _	
800 1000 1250 1600	1000 1250 1600 2000	0 0 0	-1000 -1250 -1600 -2000	_ _ _ _	_ _ _	_ _ _ _	_ _ _ _	_ _ _ _	_ _ _	_ _ _ _	- - - -	80 100 120 140	_ _ _ _	_ _ _ _	_ _ _ _	_ _ _

Notes: (1) This diameter is included in this group.

- (2) Applies to bearings with cylindrical bore.
- (3) Width deviation and variation of outer ring are the same with of inner ring. Outer ring width variation of classes 5, 4 and 2 are listed in Table 5.1.2.
- (4) Applies to the rings of single bearings made for paired of stack mounting.
- (5) Applies ro radial ball bearings such as deep groove ball bearing, angular contact ball bearings.

					Office partie							
Bearing bore diameter Nominal		Radia	runout of	assemble K_{ia}	d bearing i	nner ring		ng referei with bore				ng inner ring raceway Sia (5)
d (mm		Class 0	Class 6	Class 5	Class 4	Class 2	Class 5	Class 4	Class 2	Class 5	Class 4	Class 2
Over	Incl.	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max
0.6(1) 2.5 10	2.5 10 18	10 10 10	5 6 7	4 4 4	2.5 2.5 2.5	1.5 1.5 1.5	7 7 7	3 3 3	1.5 1.5 1.5	7 7 7	3 3 3	1.5 1.5 1.5
18 30 50	30 50 80	13 15 20	8 10 10	4 5 5	3 4 4	2.5 2.5 2.5	8 8 8	4 4 5	1.5 1.5 1.5	8 8 8	4 4 5	2.5 2.5 2.5
80 120 150	120 150 180	25 30 30	13 18 18	6 8 8	5 6 6	2.5 2.5 5	9 10 10	5 6 6	2.5 2.5 4	9 10 10	5 7 7	2.5 2.5 5
180 250 315	250 315 400	40 50 60	20 25 30	10 13 15	8 _ _	5 _ _	11 13 15	7 _ _	5 _ _	13 15 20	8 - -	5 - -
400 500 630	500 630 800	65 70 80	35 40 –	_ _ _	= =	_ _ _		_ _ _	_ _ _	_ _ _	_ _ _	_ _ _
800 1000 1250 1600	1000 1250 1600 2000	90 100 120 140	_ _ _ _	_ _ _ _	_ _ _ _	- - - -	= =	_ _ _	_ _ _	_ _ _	_ _ _ _	_ _ _ _

Notes: (1) This diameter is included in this group.

- (2) Applies to bearings with cylindrical bore.
- (3) Width deviation and variation of outer ring are the same with of inner ring. Outer ring width variation of classes 5, 4 and 2 are listed in Table 5.1.2.
- (4) Applies to the rings of single bearings made for paired of stack mounting.
- (5) Applies ro radial ball bearings such as deep groove ball bearing, angular contact ball bearings.

			Bearing outside diameter														
Bearing outside diameter Nominal D (mm)			Single plane mean outside diameter deviation De ΔD_{mp}											eviation of a single outside diameter $\Delta D_{\rm S}$			
			0	010		01 5		Olaca 4		010		Class 4					
		Cla	Class 0		Class 6		Class 5		Class 4		Class 2		Diameter series 0,1,2,3,4		Class 2		
Over	Incl.	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low		
2.5 ⁽¹ 6 18) 6 18 30	0 0 0	- 8 - 8 - 9	0 0 0	- 7 - 7 - 8	0 0 0	- 5 - 5 - 6	0 0 0	- 4 - 4 - 5	0 0 0	- 2.5 - 2.5 - 4	0 0 0	- 4 - 4 - 5	0 0 0	- 2.5 - 2.5 - 4		
30 50 80	50 80 120	0 0 0	- 11 - 13 - 15	0 0 0	- 9 -11 -13	0 0 0	- 7 - 9 -10	0 0 0	- 6 - 7 - 8	0 0 0	- 4 - 4 - 5	0 0 0	- 6 - 7 - 8	0 0 0	- 4 - 4 - 5		
120 150 180	150 180 250	0 0 0	- 18 - 25 - 30	0 0 0	-15 -18 -20	0 0 0	-11 -13 -15	0 0 0	- 9 -10 -11	0 0 0	- 5 - 7 - 8	0 0 0	- 9 -10 -11	0 0 0	- 5 - 7 - 8		
250 315 400	315 400 500	0 0 0	- 35 - 40 - 45	0 0 0	-25 -28 -33	0 0 0	-18 -20 -23	0 0 —	-13 -15 -	0 0 -	- 8 -10 -	0 0 -	-13 -15 -	0 0 -	- 8 -10 -		
500 630 800	630 800 1000	0 0 0	- 50 - 75 -100	0 0 0	-38 -45 -60	0 0 -	-28 -35 -		_ _ _		_ _ _	_ _ _	_ _ _	_ _ _	= = =		
1000 1250 1600 2000	1250 1600 2000 2500	0 0 0 0	-125 -160 -200 -250	_ _ _ _	_ _ _ _	- - - -	_ _ _	- - - -	_ _ _ _	_ _ _	_ _ _ _	- - - -	- - - -	_ _ _ _			

Notes: (1) This diameter is included in this group.

- (2) Applies before mounting and after removal of internal or external snap ring.
- (3) Applies to radial ball bearings such as deep groove ball bearings, angular contact ball bearings.
- (4) Outer ring width variation of class 0 and 6 are listed in Table 5.1.1.
- (5) Applies to radial ball bearings such as deep groove ball bearing, angular contact ball bearings.

Unit: μ m

			Bearing outside diameter												
Bearing outside diameter Nominal D (mm)			Outside diameter variation in a single radial plane (2)												
			Class 0				V_{Dp} Class 6				Class 5		ss 4		
		Ор	Open bearing Seal · shield			Open bearing Seal · shield				Open bearing		Open bearing		Class 2	
			Diameter series bearing			Diameter series bearing				Diameter series				Open bearing	
		7,8,9	0,1	2,3,4	2,3,4	7,8,9	0,1	2,3,4	0,1,2,3,4	7,8,9	0,1,2,3,4	7,8,9	0,1,2,3,4		
Over	Incl.	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	
2.5 ⁽¹ 6 18) 6 18 30	10 10 12	8 8 9	6 6 7	10 10 12	9 9 10	7 7 8	5 5 6	9 9 10	5 5 6	4 4 5	4 4 5	3 3 4	2.5 2.5 4	
30 50 80	50 80 120	14 16 19	11 13 19	8 10 11	16 20 26	11 14 16	9 11 16	7 8 10	13 16 20	7 9 10	5 7 8	6 7 8	5 5 6	4 4 5	
120 150 180	150 180 250	23 31 38	23 31 38	14 19 23	30 38 -	19 23 25	19 23 25	11 14 15	25 30 –	11 13 15	8 10 11	9 10 11	7 8 8	5 7 8	
250 315 400	315 400 500	44 50 56	44 50 56	26 30 34	- - -	31 35 41	31 35 41	19 21 25	- - -	18 20 23	14 15 17	13 15 —	10 11 -	8 10 –	
500 630 800	630 800 1000	63 94 125	63 94 125	38 55 75		48 56 75	48 56 75	29 34 45		28 35 –	21 26 –			_ _ _	
1000	1250	_	_	_	_	_	_	_	_	_	_	_	_	_	
1250 1600	1600 2000	_	_	_	_	_	_	_	_	_	_	_	_	_	
2000	2500	_	_	_	_	_	_	_	_	_	_	_	_	_	

Notes: (1) This diameter is included in this group.

- (2) Applies before mounting and after removal of internal or external snap ring.
- (3) Applies to radial ball bearings such as deep groove ball bearings, angular contact ball bearings.
- (4) Outer ring width variation of class 0 and 6 are listed in Table 5.1.1.
- (5) Applies to radial ball bearings such as deep groove ball bearing, angular contact ball bearings.

Unit: μ m

Bearing diameter	Nominal)	Mea			e diamete ter variatio		F		nout of a ring oute <i>K</i> ea	assemble er ring	ed	suface of	generarix	ring outside cinclination eference face
(m	m)	Class 0	Class 6	Class 5	Class 4	Class 2	Class 0	Class 6	Class 5	Class 4	Class 2	Class 5	Class 4	Class 2
Over	Incl.	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max
2.5(¹) 6	6	5	3	2	1.5	15	8	5	3	1.5	8	4	1.5
6	18	6	5	3	2	1.5	15	8	5	3	1.5	8	4	1.5
18	30	7	6	3	2.5	2	15	9	6	4	2.5	8	4	1.5
30	50	8	7	4	3	2	20	10	7	5	2.5	8	4	1.5
50	80	10	8	5	3.5	2	25	13	8	5	4	8	4	1.5
80	120	11	10	5	4	2.5	35	18	10	6	5	9	5	2.5
120	150	14	11	6	5	2.5	40	20	11	7	5	10	5	2.5
150	180	19	14	7	5	3.5	45	23	13	8	5	10	5	2.5
180	250	23	15	8	6	4	50	25	15	10	7	11	7	4
250	315	26	19	9	7	4	60	30	18	11	7	13	8	5
315	400	30	21	10	8	5	70	35	20	13	8	13	10	7
400	500	34	25	12	-	—	80	40	23	-	–	15	–	–
500	630	38	29	14	_	-	100	50	25	_	_	18	_	_
630	800	55	34	18	_	-	120	60	30	_	_	20	_	_
800	1000	75	45	-	_	-	140	75	–	_	_	—	_	_
1000 1250 1600 2000	1250 1600 2000 2500			- - -			160 190 220 250				- - - -	- - -		

Notes: (1) This diameter is included in this group.

- (2) Applies before mounting and after removal of internal or external snap ring.
- (3) Applies to radial ball bearings such as deep groove ball bearings, angular contact ball bearings.
- (4) Outer ring width variation of class 0 and 6 are listed in Table 5.1.1.
- (5) Applies to radial ball bearings such as deep groove ball bearing, angular contact ball bearings.

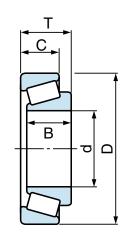
Remarks: The high deviation of bearing cylindrical bore diameter specified in this table does not apply within a distance of $1.2 \times r$ (max) from the ring face.

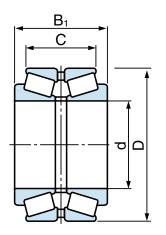
Bearing diameter		Assembled runout with	_		ce Outer ring width variation V_{Cs} (4)				
(mı		Class 5	Class 4	Class 2	Class 5	Class 4	Class 2		
Over	Incl.	Max	Max	Max	Max	Max	Max		
2.5 ⁽¹) 6	8	5	1.5	5	2.5	1.5		
6	18	8	5	1.5	5	2.5	1.5		
18	30	8	5	2.5	5	2.5	1.5		
30	50	8	5	2.5	5	2.5	1.5		
50	80	10	5	4	6	3	1.5		
80	120	11	6	5	8	4	2.5		
120	150	13	7	5	8	5	2.5		
150	180	14	8	5	8	5	2.5		
180	250	15	10	7	10	7	4		
250	315	18	10	7	11	7	5		
315	400	20	13	8	13	8	7		
400	500	23	-	–	15	-	–		
500	630	25	_	-	18		_		
630	800	30	_	-	20		_		
800	1000	–	_	-	–		_		
1000 1250 1250 1600 1600 2000 2000 2500			- - - -		- - - -	- - - -			

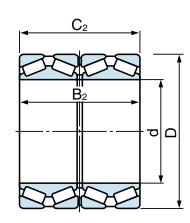
Notes: (1) This diameter is included in this group.

- (2) Applies before mounting and after removal of internal or external snap ring.
- (3) Applies to radial ball bearings such as deep groove ball bearings, angular contact ball bearings.
- (4) Outer ring width variation of class 0 and 6 are listed in Table 5.1.1.
- (5) Applies to radial ball bearings such as deep groove ball bearing, angular contact ball bearings.

Remarks: The high deviation of bearing cylindrical bore diameter specified in this table does not apply within a distance of $1.2 \times r$ (max) from the ring face.

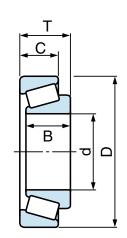


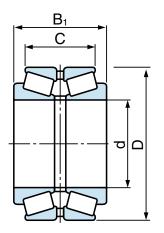

П	hi	it:	μ m
U	'	IL.	μ

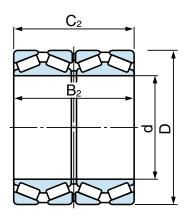

Bearing b	n hore						Bearir	ng bo	re dia	ameter				
diameter	Nominal		gle plar /iation	ne mea $ extstyle extstyl$		e diame	eter			of a single eter Δd_s		liamete radial p		
(mr		Clas Clas	s 0 s 6X	Clas Clas		Cla	ss 4		Cla	ss 4	Class 0 Class 6X	Class 6	Class 5	Class 4
Over	Incl.	High	Low	High	Low	High	Low	H	ligh	Low	Max	Max	Max	Max
10 18 30	18 30 50	0 -12 0 -12 0 -12		0 0 0	- 7 - 8 -10	0 0 0	- 5 - 6 - 8		0	- 5 - 6 - 8	12 12 12	7 8 10	568	456
50 80 120	80 120 180	0	-15 -20 -25	0	-12 -15 -18	0	- 9 -10 -13		0	- 9 -10 -13	15 20 25	12 15 18	9 11 14	7 8 10
180 250 315	250 315 400	0 0 0	-30 -35 -40	0 _ _	-22 - -	0 _ _	-15 - -		<u>0</u>	–15 – –	30 35 40	22 _ _	17 _ _	11 _ _
400 500 630	500 630 800	0	-45 -50 -75	=		=					=	=	=	

Remarks:

- 1. The high deviation of bearing bore diameter specified in this table does not apply within a distance of $1.2 \times r$ (max) from the ring face.
- 2. Some of these tolerances conform with the NACHI Standard.

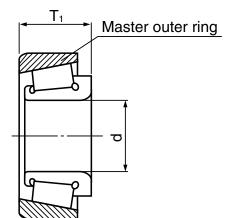


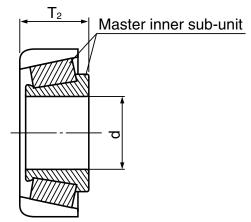

Unit: μ m


													•
	Bearing diameter d (mi	Nominal I	Me	[1000 6						ng	Inner refere face ru with t S Class 5	ence unout oore	Assembled bearing inner ring face runout with raceway Sia
	Over	Incl.	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max
	10 18 30	18 30 50	9 5 9 6 9 8		5 5 5	4 4 5	15 18 20	7 8 10	5 5 6	3 3 4	7 8 8	3 4 4	3 4 4
	50 80 120	80 120 180	9 8 11 9 15 11 19 14		185		25 30 35	10 13 18	7 8 11	4 5 6	8 9 10	5 5 6	4 5 7
	180 250 315	250 315 400	23 26 30	16 - -	11 _ _	8 _ _	50 60 70	20 _ _	13 _ _	8 - -	11 _ _	7 _ _	8 - -
	400 500 630	500 630 800	_ _ _	=	=	=	70 85 100	_ _ _	_ _ _	_ _ _			

Remarks:

- 1. The high deviation of bearing bore diameter specified in this table does not apply within a distance of $1.2 \times r$ (max) from the ring face.
- 2. Some of these tolerances conform with the NACHI Standard.

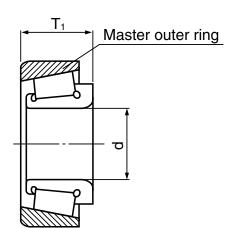

(1/2)

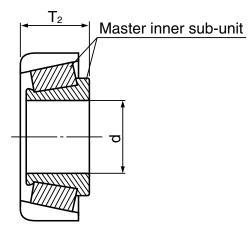

					Unit:	μ m
Be	aring ou	tside dia	meter			
		Outsides a sing				
Clas	ss 4	Class 0 Class 6X	Class 6	Class 5	Class 4	
h	Low	Max	Max	Max	Max	
	- 6 - 7 - 9	12 14 16	8 9 11	6 7 8	5 5 7	
	4.0	4.0	4.0	4.0		

Dearing of	utaida	Single plane mean outside diameter Deviation of a single Outside diameter variation in												
Bearing or diameter N		Singl devia	•	mean ⊿D		e diam		eviation of utside diar				eter varia plane <i>V</i>		
(mm))		ss 0 ss 6X	Clas Clas		Cla	ss 4	Cla	ss 4	Class 0 Class 6X	Class 6	Class 5	Class 4	
Over	Incl.	High	Low	High	Low	High	Low	High	Low	Max	Max	Max	Max	
18 30 50	30 50 80	0 0 0	- 12 - 14 - 16	0 0 0	- 8 - 9 -11	0 0 0	- 6 - 7 - 9	0 0 0	- 6 - 7 - 9	12 14 16	8 9 11	6 7 8	5 5 7	
80 120 150	120 150 180	0 0 0	- 18 - 20 - 25	0 0 0	-13 -15 -18	0 0 0	-10 -11 -13	0 0 0	-10 -11 -13	18 20 25	13 15 18	10 11 14	8 8 10	
180 250 315	250 315 400	0 0 0	- 30 - 35 - 40	0 0 0	-20 -25 -28	0 0 0	-15 -18 -20	0 0 0	-15 -18 -20	30 35 40	20 25 28	15 19 22	11 14 15	
400 500 630 800	500 630 800 1000	0 0 0 0	- 45 - 50 - 75 -100	= =	= =	= =	_ _ _ _	_ _ _ _	_ _ _	45 50 – –	= =			
							_				_			

Remarks: 1. The low deviation of bearing outside diameter specified in this table does not apply within a distance of $1.2 \times r$ (max) from the ring face.

2. Some of these tolerances conform with the NACHI Standard.




Unit: μ m

	Bearing diameter [(m	Nominal)	Mea	an outsi ation <i>V</i>	ide dian ide dian IDmp Class 5	neter	Radial rubea Class 0 Class 6X	ring ou	iter rin		outside generatrix with oute	e face S D $_$	Assembled bearing outer ring face runout with raceway Sea
	Over	Incl.	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max
	18 30		9	6	5	4	18	9	6	4	8	4	5
	30 50		11	7	5	5	20	10	7	5	8	4	5
	50 80		12	8	6	5	25	13	8	5	8	4	5
	80 120		14	10	7	5	35	18	10	6	9	5	6
	120 150		15	11	8	6	40	20	11	7	10	5	7
	150 180		19	14	9	7	45	23	13	8	10	5	8
180 250		23	15	10	8	50	25	15	10	11	7	10	
250 315		26	19	13	9	60	30	18	11	13	8	10	
315 400		30	21	14	10	70	35	20	13	13	10	13	
400 500		34	_	_	_	80	_	_	_	_	_	= = =	
500 630		38	_	_	_	100	_	_	_	_	_		
630 800		-	_	_	_	120	_	_	_	_	_		
800 1000		-	_	_	_	120	_	_	_	_	_		

Remarks: 1. The low deviation of bearing outside diameter specified in this table does not apply within a distance of $1.2 \times r$ (max) from the ring face.

2. Some of these tolerances conform with the NACHI Standard.

Table 5.2.3 Deviations of Single Ring Width, Bearing Width and Duplex/Stack Mounted Bearing Width Unit: μ m

Bearin diam	neter	Devi	ation of	7	gle inn Bs	er ring	g width	Deviation of a single outer ring width $\triangle C_s$							
Nom (m	d		ass 0 ass 6	Class	s 6X		ass 5 ass 4			iss 0 iss 6	Class	s 6X	Clas Clas		
Over	Incl.	High	Low	High	Low	High	Low		High	Low	High	Low	High	Low	
10 18 30	18 30 50	0 0 0	-120 -120 -120	0 0 0	-50 -50 -50	0 0 0	-200 -200 -240		0 0 0	-120 -120 -120	0 0 0	-100 -100 -100	0 0 0	-200 -200 -240	
50 80 120	80 120 180	0 0 0	-150 -200 -250	0 0 0	-50 -50 -50	0 0 0	-300 -400 -500		0 0 0	-150 -200 -250	0 0 0	-100 -100 -100	0 0 0	-300 -400 -500	
180 250 315	250 315 400	0 0 0	-300 -350 -400	0 0 0	-50 -50 -50	<u>0</u> _	-600 - -		0 0 0	-300 -350 -400	0 0 0	-100 -100 -100	0 - -	-600 - -	
400 500 630	500 630 800	0 0 0	-450 -500 -750	_ _ _	_ _ _	_ _ _			0 0 0	-450 -500 -750	_ _ _	_ _ _	_ _ _	_ _ _	

Remarks: Effective width of an inner sub-unit T₁ is the bearing width obtained when this sub-unit is mated with a master outer ring. Effective width of an outer ring T2 is the bearing width obtained when this ring is mated with a master inner sub-unit.

Table 5.2.3 Deviations of Single Ring Width,
Bearing Width and Duplex/Stack Mounted Bearing Width

Unit: μ m

Bearing bore Deviation of the actual effective width Deviation of a actual bearing width diameter of inner sub-unit ΔT_{18} ΔT_{S} Nominal Class 0 Class 5 d Class 6X Class 6X Class 0 Class 6 Class 4 (mm) High High Over Incl. Low High Low Low High Low High Low 10 18 +200 +100 0 +200 -200+100 0 + 50 0 18 +200 +1000 +200 -200+ 50 30 +1000 0 30 + 50 50 +200 +100 +200 -200+100 0 0 -200+100 0 50 80 +200 0 +100 +200 + 50 0 80 +1000 120 +200 -200+200 -200+100-10050 0 120 180 +350 -250+150+350 -250-150+ 50 +1500 180 +350 -250+150 +350 -250250 +150 -1500 + 50 250 0 -150+100 0 315 +350 -250+200 +150315 400 +400 -400+200 +200 -200+100 0 -400400 +400 500 500 -500630 +500630 800 +600 -600

Remarks: Effective width of an inner sub-unit T₁ is the bearing width obtained when this sub-unit is mated with a master outer ring.

Effective width of an outer ring T₂ is the bearing width obtained when this ring is mated with a master inner sub-unit.

Table 5.2.3 Deviations of Single Ring Width,
Bearing Width and Duplex/Stack Mounted Bearing Width

Unit: μ m

Bearing bo		Deviat	ion of the a	actual effe	ctive	Deviation o	f duplex/stack	mounted bea	aring width	
diamete Nomina		width o	of outer sub	o-unit 🔟	T ₂₈		18	ΔB_{2S}	ΔC_{2S}	
d (mm)	.1	Cla	ss 0	Class	s 6X	•	inted bearing ss 0		v bearing ss 0	
Over In	ncl.	High	Low	High	Low	High	Low	High	Low	
18 :	18 30 50	+100 0 +100 0 +100 0		+ 50 + 50 + 50	0 0 0	+ 200 + 200 + 240	- 200 - 200 - 240	_ _ _	_ _ _	
80 12	80 20 80	+100 0 +100 0 +100 -100 +200 -100		+ 50 + 50 +100	0 0 0	+ 300 + 400 + 500	- 300 - 400 - 500	+ 400 + 500 + 600	- 400 - 500 - 600	
250 3	50 15 00	+200 -100 +200 -100 +200 -100 +200 -200		+100 +100 +100	0 0 0	+ 600 + 700 + 800	- 600 - 700 - 800	+ 750 + 900 +1000	- 750 - 900 -1000	
500 63	00 30 00	_ _ _	_ _ _	_ _ _	_ _ _	+ 900 +1000 +1500	- 900 -1000 -1500	+1200 +1200 +1500	-1200 -1200 -1500	

Remarks: Effective width of an inner sub-unit T₁ is the bearing width obtained when this sub-unit is mated with a master outer ring.

Effective width of an outer ring T₂ is the bearing width obtained when this ring is mated with a master inner sub-unit.

Table 5.3.1 Tolerance Values of Shaft Washer Bore Diameter

Table 5.3.2 Tolerance Values of Housing Washer Outside Diameter Unit: μ m Unit: μ m

dian Nor d d	ng bore neter ninal or d ₂ nm)	bore di devi	Class 6 Class 4 Class 6 Class 4 Class 6 Class 5 Class 5 Class 5						on (1)	dia No	g outside meter minal D nm)	diameter in a sinç	outside deviation, gle plane Omp	va s p — (4	utside diameter variation in a single radial plane V_{Dp} Class 0 Class 6 Class 4 Class 5		
Over	Incl.	High Low	High	Low	Max	Max	Max	Max	Max	Max	Over	Incl.	High Low	High Lo	W	Max	Max
18 30	18 30 50	0 - 8 0 - 10 0 - 12	0 0 0	- 7 - 8 -10	6 8 9	5 6 8	10 10 10	5 5 6	3 3 3	2 2 2	10 18 30	18 30 50	0 - 11 0 - 13 0 - 16	0 - 0 - 0 -	7 8 9	8 10 12	5 6 7
50 80 120	80 120 180	0 - 15 0 - 20 0 - 25	0 0 0	-12 -15 -18	11 15 19	9 11 14	10 15 15	7 8 9	4 4 5	3 3 4	50 80 120	80 120 180	0 - 19 0 - 22 0 - 25	0 0 0	13	14 17 19	8 10 11
180 250 315	250 315 400	0 - 30 0 - 35 0 - 40	0 0 0	-22 -25 -30	23 26 30	17 19 23	20 25 30	10 13 15	5 7 7	4 5 5	180 250 315	250 315 400	0 - 30 0 - 35 0 - 40	0 -2 0 -2 0 -2	20 25 28	23 26 30	15 19 21
400 500 630	500 630 800	0 - 45 0 - 50 0 - 75	0 0 0	-35 -40 -50	34 38 –	26 30 -	30 35 40	18 21 25	9 11 13	6 7 8	400 500 630	500 630 800	0 - 45 0 - 50 0 - 75	0 -3 0 -3 0 -4	33 38 45	34 38 55	25 29 34
800 1000	1000 1250	0 -100 0 -125	_	_		_	45 50	30 35	15 18	=	800 1000 1250	1000 1250 1600	0 -100 0 -125 0 -160	_ _ _	_ _ _	75 _ _	

Note: (1) For double acting bearings, use size classification d, not d2.

Back

Raceway to back face thickness variation of housing washer Se applies to the bearing with seat.

Table 5.3.3 Height Tolerances of Thrust Ball Bearings (with Flat Seat) and Center Washers (Class 0) Unit: μ m

Bearing bore diameter Nominal d (mm)		hei	Deviation of single height, T ΔT_s		Deviation of single height, T_2 of double direction rhrust bearing (1) $\triangle T_{2S}$		Deviation of single height, T_1 of double direction rhrust bearing (1) $\triangle T_1$ s		Deviation of center washer height (1) $\triangle B_s$	
Over	Incl.	High	Low	High	Low	High	Low	High	Low	
30 50	30 50 80	0 0 0	- 75 -100 -125	0 0 0	- 75 -100 -125	+ 50 + 75 +100	-150 -200 -250	0 0 0	- 50 - 75 -100	
80 120 180	120 180 250	0 0 0	-150 -175 -200	0 0 0	-150 -175 -200	+125 +150 +175	-300 -350 -400	0 0 0	-125 -150 -175	
250 315	315 400	0	-225 -300	0	-225 -300	+200 +250	-450 -600	0	-200 -250	

Note: (1) For double acting bearings, use size classification d, not d2.

Table 5.4.1 Tolerance Values of Inner Rings

Table 5.4.2 Tolerance Values of **Outer Rings** Unit: μ m

Unit: μ m

Bearing bore diameter Nominal d (mm)		Single plane mean bore diameter deviation $\Delta d \mathrm{mp}$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ation of e height,	Bearing bore diameter Nominal D (mm)		Outside diameter deviation $ extstyle \Delta D$ mp		
Over	Incl.	High	Low	Max	Max	High	Low	Over	Incl.	High	Low
50 80 120	80 120 180	0 0 0	-15 -20 -25	11 15 19	25 25 30	+150 +200 +250	-150 -200 -250	120 180 250	180 250 315	0 0 0	- 25 - 30 - 35
180 250 315	250 315 400	0 0 0	-30 -35 -40	23 26 30	30 35 40	+300 +350 +400	-300 -350 -400	315 400 500	400 500 630	0 0 0	- 40 - 45 - 50
400	500	0	-4 5	34	45	+450	-4 50	630 800	800 1000	0	- 75 -100

Remarks: The high deviation of bearing bore diameter specified in this table does not apply within a distance of $1.2 \times \Gamma$ (max) from the ring face. The low deviation of bearing outside diameter specified in this table does not apply within a distance of $1.2 \times \Gamma$ (max) from the ring face.

⁽²⁾ Height deviations ΔT_{S} , ΔT_{1S} , ΔT_{2S} apply to the bearings with flat seat.

Unit: μ m

Bearing bore diameter Nominal d mm (inch)			Deviation of single bore diameter Δd_s								
		Clas	Class 4		Class 3		Class 0		Class 00		
Over	Incl.	High	Low	High	Low	High	Low	High	Low		
76.200 (3) 304.800 (12)	76.200 (3) 304.800 (12) 609.600 (24)	+ 13 + 25 + 51	0 0 0	+13 +13 +25	0 0 0	+13 +13 -	0 0 -	+8 +8 -	0 0 -		
609.600 (24) 914.400 (36) 1219.200 (48)	914.400 (36) 1219.200 (48) –	+ 76 +102 +127	0 0 0	+38 +51 +76	0 0 0	_ _ _	- - -	- - -			

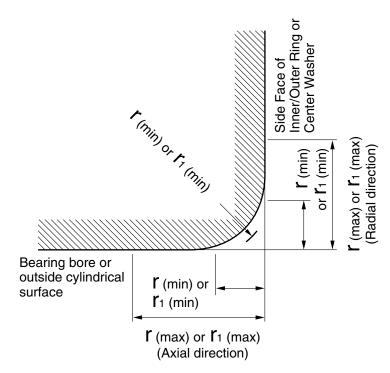
Table 5.5.2 Tolerance of Outer Ring (Cup) Outside Diameter

	Bearing outside diameter Nominal D mm (inch)			Deviation of single outside diameter ΔD_s								
			Clas	Class 4 Class 3		Class 0		Class 00				
	Over	Incl.	High	Low	High	Low	High	Low	High	Low		
	- 304.800 (12) 609.600 (24)	304.800 (12) 609.600 (24) 914.400 (36)	+ 25 + 51 + 76	0 0 0	+13 +25 +38	0 0 0	+13 _ _	0 - -	+8 - -	0 - -		
	914.400 (36) 1219.200 (48)	1219.200 (48) -	+102 +127	0 0	+51 +76	0 0	_ _	_ _	_ _			

Table 5.5.3 Tolerance of Bearing Width and Duplex/Stack Mounted Bearing Width

Bearing bore			j outside	Deviation of the actual bearing width ΔT_s						
	diameter Nominal d mm (inch)		diameter Nominal D mm (inch)		Class 4		Class 3		s 0 s 00	
Over	Incl.	Over	Incl.	High	Low	High	Low	High	Low	
_ 101.600 (4 304.800 (1		- - -	_ _ 508.000 (20)	+203 +356 +381	0 -254 -381	+203 +203 +203	-203 -203 -203	+203 +203 -	-203 -203 -	
304.800 (1 609.600 (2		508.000 (20) -		+381 +381	-381 -381	+381 +381	-381 -381	_ _		

Note: (1) Deviation of the actual bearing width B_2 , and C_2 for row tapered roller bearing is $\pm 1524 \,\mu$ m for the tolerance classes of 4, 3 and 0.


Table 5.5.4 Radial Runout of Assembled Bearing Inner Ring and Outer Ring

Bearing outside diamet	ter Nominal D mm (inch)		Radial runout of assembled bearing inner ring K ia and of assembled bearing outer ring K ea (Max)					
Over Incl.		Class 4	Class 3	Class 0	Class 00			
_ 304.800 (12) 609.600 (24) 914.400 (36)	304.800 (14) 609.600 (24) 914.400 (36)	51 51 76 76	8 18 51 76	4 - - -	2 - - -			

Unit: μ m

Unit: μ m

5.6 Chamfer Dimension Limits

 Γ : Chamfer dimensions of inner ring and outer ring. Γ_1 : Chamfer dimensions of inner ring and outer ring

(front face) or of inner ring of double direction thrust bearing.

Remarks: The exact shape of the chamfer surface is not specified, but its contour in an axial plane shall not be allowed to project beyond the imaginary circular arc, of radius **r** min, tangential to the ring face and the bore or outside cylindrical surface of the ring (see figure).

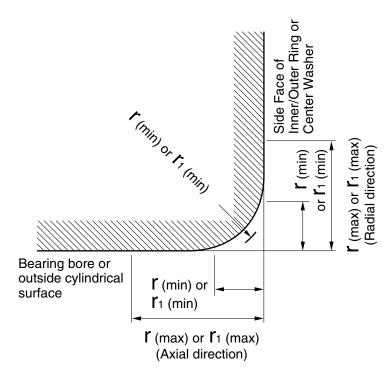
Table 5.6.1 Chamfer Dimension Limits of Radial

Bearings Except Tapered Roller Bearings

Unit: mm

Smallest permissible chamfer dimensions of inner and outer rings	Bearing bore chamfe of diameter Nominal out		chamfer of inn outer	permissible dimensions per and r rings or r ₁ (max)	Reference Shaft and housing fillet radius
r (min) or r ₁ (min)	Over	Incl.	Radial direction	Axial direction	Max
0.05 0.08 0.1	_ _ _	_ _ _	0.1 0.16 0.2	0.2 0.3 0.4	0.05 0.08 0.1
0.15 0.2	_	_	0.3 0.5	0.6 0.8	0.15 0.2
0.3	_ 40	40 -	0.6 0.8	1 1	0.3
0.6	_ 40	40 -	1 1.3	2 2	0.6
1	_ 50	50 -	1.5 1.9	3 3	1
1.1	_ 120	120 -	2 2.5	3.5 4	1
1.5	_ 120	120 –	2.3 3	4 5	1.5

Remarks: For bearings with a width of 2mm or less the r max values for the radial direction apply also in the axial direction.


[Continue→]

2/2)

Unit: mm

r : Chamfer dimensions of inner ring and outer ring.
 r₁ : Chamfer dimensions of inner ring and outer ring (front face) or of inner ring of double direction thrust bearing.

Remarks: The exact shape of the chamfer surface is not specified, but its contour in an axial plane shall not be allowed to project beyond the imaginary circular arc, of radius I min, tangential to the ring face and the bore or outside cylindrical surface of the ring (see figure).

Table 5.6.1 Chamfer Dimension Limits of Radial Bearings Except Tapered Roller Bearings

Bearings Exec	Offic. IIIII						
Smallest					Reference Shaft and		
chamfer dimensions of inner and	r Bearing bore ns diameter Nominal nd d gs		of inn oute	of inner and outer rings I (max) or I (max)			
r (min) or r ₁ (min)			Radial direction	Axial direction	Max		
2	- 80 220	80 220 –	3 3.5 3.8	4.5 5 6	2		
2.1	_ 280	280 –	4 4.5	6.5 7	2		
2.5	- 100 280	100 280 –	3.8 4.5 5	6 6 7	2		
3	_ 280	280 –	5 5.5	8 8	2.5		
4 5	_ _	_	6.5 8	9 10	3 4		
6 7.5 9.5	_ _ _	_ _ _	10 12.5 15	13 17 19	5 6 8		
12 15 19	_ _ _	_ _ _	18 21 25	24 30 38	10 12 15		
	Smallest permissible chamfer dimensions of inner and outer rings r (min) or r1 (min) 2 2.1 2.5 3 4 5 6 7.5 9.5 12 15	Smallest permissible chamfer dimensions of inner and outer rings r (min) or r1 (min) 2 80 220 2.1 2.5 100 280 3 280 4 5 - 6 7.5 9.5 - 12 15 - 11 - 12 15	Smallest permissible chamfer dimensions of inner and outer rings Bearing bore diameter Nominal dometer ings I' (min) or I'1 (min) Over Incl. 2 80 80 220 220 220 - 2.1 - 80 80 220 220 - 2.1 - 280 280 - 2.5 100 280 280 280 - 280	Smallest permissible chamfer dimensions of inner and outer rings Bearing bore diameter Nominal d outer rings Largest permissible chamfer of innouter of innouter rings r (min) or r (min) or r (min) outer rings — 80 3 80 220 3.5 3.8 2 80 220 - 3.8 2.1 — 280 4 4.5 280 - 4.5 — 100 3.8 4.5 280 - 5 — 5 3 — 280 5.5 4 6.5 — 6.5 5 8 — 10 12.5 9.5 — 15 12 15 — 15 12 15 — 18 21	permissible chamfer dimensions of inner and outer rings Bearing bore diameter Nominal outer rings Chamfer dimensions of inner and outer rings Γ (min) or Γ1 (min) Over Incl. Radial direction Axial direction 2 80 220 3.5 5 220 - 3.8 6 5 3 4.5 2.1 - 280 4.5 7 4.5 7 2.5 100 280 4.5 6 280 - 5 7 6 5 7 3 - 280 5 8 5.5 8 10 8 10 4 - 280 5.5 8 10 8 10 6 10 13 7.5 9.5 - 15 19 12 15 19 18 24 21 30		

Remarks: For bearings with a width of 2mm or less the r max values for the radial direction apply also in the axial direction.

Table 5.6.2 Chamfer Dimension Limits of Tapered Roller Bearings

U	nit:	mm
_		

Table 5.6.3 Chamfer Dimension Limits of Thrust Bearings

Unit: mm

	iapci		i bearing	<u> </u>	Offic. Ithiri
Smallest permissible chamfer dimensions of inner and outer rings	Bearing bore diameter or outside diameter (1) d or D		chamfer d	ermissible limensions er and rings	Reference Shaft and housing fillet radius
r (min)	Over	Incl.	Radial direction	Axial direction	Max
0.3	- 40	40 _	0.7 0.9	1.4 1.6	0.3
0.6	- 40	40 -	1.1 1.3	1.7 2	0.6
1	_ 50	50 -	1.6 1.9	2.5 3	1
1.5	120 250	120 250 –	2.3 2.8 3.5	3 3.5 4	1.5
2	120 250	120 250 –	2.8 3.5 4	4 4.5 5	2
2.5	120 250	120 250 –	3.5 4 4.5	5 5.5 6	2
3	120 250 400	120 250 400 –	4 4.5 5 5.5	5.5 6.5 7 7.5	2.5
4	120 250 400	120 250 400 –	5 5.5 6 6.5	7 7.5 8 8.5	3
5	180	180 –	6.5 7.5	8 9	4
6	_ 180	180 -	7.5 9	10 11	5

	Largest permissible	Reference
Smallest permissible chamfer dimensions of inner and outer rings	single chamfer dimensions of inner and outer rings r (max) or r 1 (max)	Shaft and housing fillet radius r a
r (min) or r ₁ (min)	Radial direction and	Max
	axial direction	Ινίαλ
0.05	0.1	0.05
0.08	0.16	0.08
0.1	0.2	0.1
0.15	0.3	0.15
0.2	0.5	0.2
0.3	0.8	0.3
0.6	1.5	0.6
1	2.2	1
1.1	2.7	1
1.5	3.5	1.5
2	4	2
2.1	4.5	2
3	5.5	2.5
4	6.5	3
5	8	4
6	10	5
7.5	12.5	6
9.5	15	8
12	18	10
15	21	12
19	25	15

Note: (1) d and D are applied to inner ring and outer ring respectively.

5.7 Tolerances for Tapered Bores

d: Bearing bore diameter, nominal

d₁: Basic diameter at the theoretical large end of a tapered bore

in case of 1/12 taper $d_1 = d + \frac{1}{12}B$

in case of 1/30 taper $d_1 = d + \frac{1}{30}B$

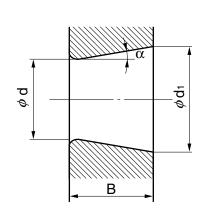
 $\triangle d_{\text{mp}}$: Mean bore diameter deviation at theoretical small end of a tapered bore

 Δd_{1mp} : Mean bore diameter deviation at theoretical large end of a tapered bore

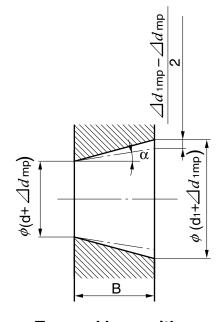
B: Bearing inner ring width, nominal

 α : Nominal taper angle (half of cone angle)

in case of 1/12 taper α = 2° 23′ 9.4″


= 2.38594°

= 0.041643 rad


in case of 1/30 taper $\alpha = 0^{\circ}57'$ 17.4"

 $= 0.95484^{\circ}$

Table 5.7.1 1/12 Tapered Bore (Class 0)
Table 5.7.2 1/30 Tapered Bore (Class 0)

Theoretical tapered bore

Tapered bore with actual mean diameters at their deviations

Table 5.7.1 1/12 Tapered Bore (Class 0)

Unit: μ m

Table 5.7.2 1/30 Tapered Bore (Class 0)

Unit: μ m

						<u> </u>
bore dir	I bearing mension d im)			tical	va si	re diameter ariation in a ngle radial ane (1)(2)
(,	$ extstyle \Delta d$ m	р	Δd 1mp	$-\Delta d$ mp	Vdp
Over	Incl.	High	Low	High	Low	Max
10 18	10 18 30	+ 22 + 27 + 33	0 0 0	+ 15 + 18 + 21	0 0 0	9 11 13
30 50 80	50 80 120	+ 39 + 46 + 54	0 0 0	+ 25 + 30 + 35	0 0 0	16 19 22
120 180 250	180 250 315	+ 63 + 72 + 81	0 0 0	+ 40 + 46 + 52	0 0 0	40 46 52
315 400 500	400 500 630	+ 89 + 97 +110	0 0 0	+ 57 + 63 + 70	0 0 0	57 63 70
630 800 1000 1250	800 1000 1250 1600	+125 +140 +165 +195	0 0 0	+ 80 + 90 +105 +125	0 0 0 0	- - - -

bore di	I bearing mension d nm)			etical	va si	Bore diameter variation in a single radial plane (1)(2)		
	,	Δd m	np	Δd 1mp	$-\Delta d$ mp	р <i>Vd</i> р		
Over	Incl.	High	Low	High	Low	Max		
50 80 120	80 120 180	+15 +20 +25	0 0 0	+30 +35 +40	0 0 0	19 22 40		
180 250 315	250 315 400	+30 +35 +40	0 0 0	+46 +52 +57	0 0 0	46 52 57		
400 500	500 630	+45 +50	0 0	+63 +70	0	63 70		

Note: (1) Applicable to all radial planes of tapered bore.

(2) Not applicable to bearings of diameter series 7 and 8.

Note: (1) Applicable to all radial planes of tapered bore.

Back

(2) Not applicable to bearings of diameter series 7 and 8.

6. Internal Clearance of Rolling Contact Bearings

Bearing internal clearance refers to the distances between the bearing rings and rolling elements as shown in Fig. 6.1 and Fig. 6.2. The amount of alternating radial movement of the free bearing rings is defined as radial clearance, and the amount of alternating axial movement of the free bearing rings is defined as axial clearance.

The term internal clearance refers to a state where no force is applied to the bearing rings and rolling elements, i.e., an unloaded state.

Since a stabilizing, measuring load is applied to bearings when measuring the internal clearance, some elastic deformation occurs to the bearing rings and rolling elements, and the measured internal clearance will be larger than the real clearance by the value of deformation. The amount of elastic deformation caused by the measuring load may be disregarded for roller bearings, but must be compensated for when measuring ball bearing clearance because it will skew the internal clearance measurement.

Internal clearance values are described in the JIS (ISO) and the Japan Bearing Industrial Association Standards (BAS) as follows:

Deep-groove ball bearings
Self-aligning ball bearings
Cylindrical roller bearings
Spherical roller bearings

For electric motor

Deep-groove ball bearings Cylindrical roller bearings BAS 1003

Bearings not covered by either JIS (ISO) or BAS are standardized by NACHI. <u>Tables 6.1 through 6.7</u> show internal clearance values for NACHI bearings.

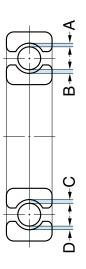


Fig. 6.1
Radial Clearance
= A+B+C+D

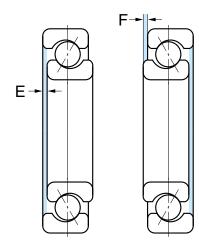


Fig. 6.2 Axial Clearance = E+F

- Table 6.1 Radial Internal Clearance of Deep-groove Ball Bearings (with Cylindrical Bore) (JIS)
- Table 6.2 Radial Internal Clearance of Extra-small and Miniature Ball Bearings (NACHI)
- Table 6.3 Radial Internal Clearance of Self-aligning Ball Bearings (JIS)

Radial Internal Clearance of Cylindrical Roller Bearings

- Table 6.4.1 Radial Internal Clearance of Cylindrical Roller Bearings with Cylindrical Bore (JIS)
- Table 6.4.2 Non-interchangeable Radial Internal Clearance of Cylindrical Roller Bearingswith Tapered Bore (NACHI)

Radial Internal Clearance of Spherical Roller Bearings

- Table 6.5.1 Radial Internal Clearance of Spherical Roller Bearings with Cylindrical Bore (JIS)
- Table 6.5.2 Radial Internal Clearance of Spherical Roller Bearings with Tapered Bore (JIS)
- Table 6.6 Radial Internal Clearance of Double-row and Duplex Tapered Roller Bearings with Cylindrical Bore (NACHI)

Radial Internal Clearance of Bearings for Electric Motor

- Table 6.7.1 Radial Internal Clearance of Deep-groove Ball Bearings (BAS)
- Table 6.7.2 Radial Internal Clearance of Cylindrical Roller Bearings (BAS)

Table 6.1 Radial Internal Clearance of Deep-groove Ball Bearings (with Cylindrical Bore) (JIS) (1/2) Unit: μ m

Bearing dia. No			Radial clearance											
d (m		C	2	CN (N	lormal)	(C3	C	24	C	5			
Over	Incl.	min	max	min	max	min	max	min	max	min	max			
2.5	6	0	7	2	13	8	23	-	-	–	-			
6	10	0	7	2	13	8	23	14	29	20	37			
10	18	0	9	3	18	11	25	18	33	25	45			
18	24	0	10	5	20	13	28	20	36	28	48			
24	30	1	11	5	20	13	28	23	41	30	53			
30	40	1	11	6	20	15	33	28	46	40	64			
40	50	1	11	6	23	18	36	30	51	45	73			
50	65	1	15	8	28	23	43	38	61	55	90			
65	80	1	15	10	30	25	51	46	71	65	105			
80	100	1	18	12	36	30	58	53	84	75	120			
100	120	2	20	15	41	36	66	61	97	90	140			
120	140	2	23	18	48	41	81	71	114	105	160			
140	160	2	23	18	53	46	91	81	130	120	180			
160	180	2	25	20	61	53	102	91	147	135	200			
180	200	2	30	25	71	63	117	107	163	150	230			

Table 6.1 Radial Internal Clearance of Deep-groove Ball Bearings (with Cylindrical Bore) (JIS) (2/2) Unit: μ m

Bearing bore dia. Nominal					Radial o	learance					
d (m		C	22	CN (N	lormal)	(C3	C	3 4	(C5
Over	Incl.	min	max	min	max	min	max	min	max	min	max
200	225	2	35	25	85	75	140	125	195	175	265
225	250	2	40	30	95	85	160	145	225	205	300
250	280	2	45	35	105	90	170	155	245	225	340
280	315	2	55	40	115	100	190	175	270	245	370
315	355	3	60	45	125	110	210	195	300	275	410
355	400	3	70	55	145	130	240	225	340	315	460
400	450	3	80	60	170	150	270	250	380	350	510
450	500	3	90	70	190	170	300	280	420	390	570
500	560	10	100	80	210	190	330	310	470	440	630
560	630	10	110	90	230	210	360	340	520	490	690
630	710	20	130	110	260	240	400	380	570	540	760
710	800	20	140	120	290	270	450	430	630	600	840
800 900 1000 1120	900 1000 1120 1250	20 20 20 20 20	160 170 180 190	140 150 160 170	320 350 380 410	300 330 360 390	500 550 600 650	480 530 580 630	700 770 850 920	670 740 820 890	940 1040 1150 1260

Table 6.2 Radial Internal Clearance of Extra-small and Miniature Ball Bearings (NACHI)

Unit: μ m

Roorin	a boro					F	Radial c	learar	ice				
Bearing bore dia. Nominal d (mm)		C1P C2P			2P	C3P C4P			4P	C	5P	C6P	
Over	Incl.	min	max	min	max	min	max	min	max	min	max	min	max
_	10	0	5	3	8	5	10	8	13	13	20	20	28

Remarks: The standard internal clearance is C3P.

Table 6.3 Radial Internal Clearance of Self-aligning Ball Bearings (JIS)

Radial clearance, cylindrical bore Radial clearance, tapered bore Bearing bore dia. Nominal d (mm) C2 CN (Normal) **C3** C4 C₅ C2 CN (Normal) C3 C4 C5 min max Over Incl. min max 2.5 105 145 100 139 130 170

Unit: μ m

Radial Internal Clearance of Cylindrical Roller Bearings

Table 6.4.1 Radial Internal Clearance of Cylindrical Roller Bearings with Cylindrical Bore (JIS)

Unit: μ m	U	Init:	μ m	1
---------------	---	-------	---------	---

Bearing bore diameter Nominal						Radial c	learance				
diameter d (n		C	2	CN (N	lormal)	C	3	C	2 4	C	25
Over	Incl.	min	max	min	max	min	max	min	max	min	max
_ 10 24	10 24 30	0 0 0	25 25 25	20 20 20	45 45 45	35 35 35	60 60 60	50 50 50	75 75 75	- 65 70	90 95
30	40	5	30	25	50	45	70	60	85	80	105
40	50	5	35	30	60	50	80	70	100	95	125
50	65	10	40	40	70	60	90	80	110	110	140
65	80	10	45	40	75	65	100	90	125	130	165
80	100	15	50	50	85	75	110	105	140	155	190
100	120	15	55	50	90	85	125	125	165	180	220
120	140	15	60	60	105	100	145	145	190	200	245
140	160	20	70	70	120	115	165	165	215	225	275
160	180	25	75	75	125	120	170	170	220	250	300
180	200	35	90	90	145	140	195	195	250	275	330
200	225	45	105	105	165	160	220	220	280	305	365
225	250	45	110	110	175	170	235	235	300	330	395
250	280	55	125	125	195	190	260	260	330	370	440
280	315	55	130	130	205	200	275	275	350	410	485
315	355	65	145	145	225	225	305	305	385	455	535
355	400	100	190	190	280	280	370	370	460	510	600
400	450	110	210	210	310	310	410	410	510	565	665
450	500	110	220	220	330	330	440	440	550	625	735

Table 6.4.2 Non-interchangeable Radial Internal Clearance of Cylindrical Roller Bearings with Tapered Bore (NACHI) Unit: μ m

	Bearing bore diameter Nominal			Radial c	learance		
d (n		C)na	C1	na	C2	2na
Over	Incl.	min	max	min	max	min	max
14	18	5	10	10	20	20	30
18	24	5	10	10	20	20	30
24	30	5	10	15	25	25	35
30	40	5	12	15	25	25	40
40	50	5	15	17	30	30	45
50	65	5	15	20	35	35	50
65	80	10	20	25	40	40	60
80	100	10	25	35	55	45	70
100	120	10	25	40	60	50	80
120	140	15	30	45	70	60	90
140	160	15	35	50	75	65	100
160	180	15	35	55	85	75	110
180	200	20	40	60	90	80	120
200	225	20	45	60	95	90	135
225	250	25	50	65	100	100	150
250	280	25	55	75	110	110	165
280	315	30	60	80	120	120	180
315	355	30	65	90	135	135	200
355	400	35	75	100	150	150	225
400	450	40	85	110	170	170	255
450	500	45	95	120	190	190	285

Remarks: JIS (ISO) has not standardized non-interchangeable radial clearance for tapered bore bearings.

Radial Internal Clearance of Spherical Roller Bearings

Table 6.5.1 Radial Internal Clearance of Spherical Roller Bearings with Cylindrical Bore (JIS)

Unit: μ m

	g bore		Radial clearance											
diameter d (r	· Nominal nm)	C	2	CN (N	lormal)	C)3	C	C4	C	5			
Over	Incl.	min	max	min	max	min	max	min	max	min	max			
14	18	10	20	20	35	35	45	45	60	60	75			
18	24	10	20	20	35	35	45	45	60	60	75			
24	30	15	25	25	40	40	55	55	75	75	95			
30	40	15	30	30	45	45	60	60	80	80	100			
40	50	20	35	35	55	55	75	75	100	100	125			
50	65	20	40	40	65	65	90	90	120	120	150			
65	80	30	50	50	80	80	110	110	145	145	180			
80	100	35	60	60	100	100	135	135	180	180	225			
100	120	40	75	75	120	120	160	160	210	210	260			
120	140	50	95	95	145	145	190	190	240	240	300			
140	160	60	110	110	170	170	220	220	280	280	350			
160	180	65	120	120	180	180	240	240	310	310	390			
180	200	70	130	130	200	200	260	260	340	340	430			
200	225	80	140	140	220	220	290	290	380	380	470			
225	250	90	150	150	240	240	320	320	420	420	520			
250	280	100	170	170	260	260	350	350	460	460	570			
280	315	110	190	190	280	280	370	370	500	500	630			
315	355	120	200	200	310	310	410	410	550	550	690			
355	400	130	220	220	340	340	450	450	600	600	750			
400	450	140	240	240	370	370	500	500	660	660	820			
450	500	140	260	260	410	410	550	550	720	720	900			
500	560	150	280	280	440	440	600	600	780	780	1000			
560	630	170	310	310	480	480	650	650	850	850	1100			
630	710	190	350	350	530	530	700	700	920	920	1190			
710	800	210	390	390	580	580	770	770	1010	1010	1300			
800	900	230	430	430	650	650	860	860	1120	1120	1440			
900	1000	260	480	480	710	710	930	930	1220	1220	1570			

Table 6.5.2 Radial Internal Clearance of Spherical Roller Bearings with Tapered Bore (JIS)

Unit: μ m

Bearing bore diameter Nominal						Radial c	learance				
diameter d (n		C	2	CN (N	lormal)		23		24		5
Over	Incl.	min	max	min	max	min	max	min	max	min	max
18	24	15	25	25	35	35	45	45	60	60	75
24	30	20	30	30	40	40	55	55	75	75	95
30	40	25	35	35	50	50	65	65	85	85	105
40	50	30	45	45	60	60	80	80	100	100	130
50	65	40	55	55	75	75	95	95	120	120	160
65	80	50	70	70	95	95	120	120	150	150	200
80	100	55	80	80	110	110	140	140	180	180	230
100	120	65	100	100	135	135	170	170	220	220	280
120	140	80	120	120	160	160	200	200	260	260	330
140	160	90	130	130	180	180	230	230	300	300	380
160	180	100	140	140	200	200	260	260	340	340	430
180	200	110	160	160	220	220	290	290	370	370	470
200	225	120	180	180	250	250	320	320	410	410	520
225	250	140	200	200	270	270	350	350	450	450	570
250	280	150	220	220	300	300	390	390	490	490	620
280	315	170	240	240	330	330	430	430	540	540	680
315	355	190	270	270	360	360	470	470	590	590	740
355	400	210	300	300	400	400	520	520	650	650	820
400	450	230	330	330	440	440	570	570	720	720	910
450	500	260	370	370	490	490	630	630	790	790	1000
500	560	290	410	410	540	540	680	680	870	870	1100
560	630	320	460	460	600	600	760	760	980	980	1230
630	710	350	510	510	670	670	850	850	1090	1090	1360
710	800	390	570	570	750	750	960	960	1220	1220	1500
800	900	440	640	640	840	840	1070	1070	1370	1370	1690
900	1000	490	710	710	930	930	1190	1190	1520	1520	1860

Table 6.6 Radial Internal Clearance of Double-row and Duplex Tapered Roller Bearings with Cylindrical Bore (NACHI)

Unit: μ m

	-		•	•								•	
Bearin diameter	g bore		Radial clearance										
diameter d (n			C1	C	2	CN (N	Iormal)	C	3	C	24	C	C 5
Over	Incl.	min	max	min	max	min	max	min	max	min	max	min	max
14	18	2	10	10	20	20	30	35	45	45	55	65	75
18	24	2	10	10	20	20	30	35	45	45	55	65	75
24	30	2	10	10	25	25	35	40	50	50	60	70	80
30	40	2	12	12	25	25	40	45	55	55	70	80	95
40	50	2	15	15	30	30	45	50	65	65	80	95	110
50	65	2	15	15	35	35	50	55	75	75	90	110	130
65	80	5	20	20	40	40	60	70	90	90	110	130	150
80	100	5	25	25	45	45	70	80	105	105	125	155	180
100	120	5	25	25	50	50	80	95	120	120	145	180	205
120	140	10	30	30	60	60	90	105	135	135	160	200	230
140	160	10	35	35	65	65	100	115	150	150	180	225	260
160	180	10	35	35	75	75	110	125	165	165	200	250	285
180	200	10	40	40	80	80	120	140	180	180	220	275	315
200	225	10	45	45	90	90	135	155	200	200	240	305	350
225	250	15	50	50	100	100	150	170	215	215	265	330	380
250	280	15	55	55	110	110	165	185	240	240	295	370	420
280	315	15	60	60	120	120	180	205	265	265	325	410	470
315	355	15	65	65	135	135	200	225	295	295	360	455	520
355	400	20	75	75	150	150	225	255	330	330	405	510	585
400	450	20	85	85	170	170	255	285	370	370	455	565	650
450	500	20	95	95	190	190	285	315	410	410	505	625	720

Radial Internal Clearance of Bearings for Electric Motor

Table 6.7.1 Radial Internal Clearance of Deep-groove Ball Bearings (BAS) Unit: μ m

Bearing diameter I d (m	Nominal	Radial cl C	
Over	Incl.	min	max
10 ⁽¹⁾	18	4	11
18	30	5	12
30	50	9	17
50	80	12	22
80	120	18	30
120	160	24	38

Note: (1) 10 mm is included in this group.

Remarks: The value in this table is under the condition of

unloaded state.

Table 6.7.2 Radial Internal Clearance of Cylindrical Roller Bearings (BAS) Unit: μ m

Bearin	g bore		Radial c	learance					
diameter d (n		Interchan	geable CT		changeable CT				
Over	Incl.	min	max	min	max				
24 40 50	40 50 65	15 20 25	35 40 45	15 20 25	30 35 40				
65 80 100	80 100 120	30 35 35	50 60 65	30 35 35	45 55 60				
120 140 140 160 160 180		40 50 60	70 85 95	40 50 60	65 80 90				
180 200		65	105	65	100				

Remarks: "Interchangeability" in this table means

interchangeability between NACHI bearings only not

with other brand bearings.

7. Materials for Rolling Contact Bearings

A rolling contact bearing consist of one or more rings and rolling elements (which directly support the loads) and, usually, a cage which keeps the rolling elements at equal intervals. Both rolling and sliding movements occur between these parts.

7.1 Bearing Ring and Rolling Elements

Because of high, repetitive stress to the rolling contact areas, fatigue phenomenon will occur to the bearing material after a duration of operation. Loading stress ultimately dislodges a surface section and the bearing fails. To delay the advent of material fatigue, bearing ring and rolling element materials should have the following properties:

- High level of hardness
- High rolling contact fatigue resistance
- Good wear resistance
- Dimensional stability
- Good mechanical strength

Standard NACHI material for bearing rings and rolling elements is vacuum-degassed, high-carbon, chrome bearing steel. See <u>Table 7.1</u>. For applications requiring a higher degree of reliability, bearing steel using a vacuum-melting process or electroslag solution (ESR). The NACHI steel used for standard bearings is SUJ2 (JIS) steel. For large size bearings, SUJ3 or SUJ5 steels are used for hardenability.

If impact resistance is required, SNCM series steel may be used (see <u>Table 7.2</u>).

In addition to the above, high-speed steel may be used for bearings for applications requiring tolerance to high temperatures.

Stainless steel may be used for bearings operating in a corrosive atmosphere.

Ceramic materials may be used for special applications.

7.2 Cage Material

Materials for cages are required to have the following properties:

- Good wear resistance
- Dimensional stability
- Good mechanical strength

 $[Continue \rightarrow]$

[-->Continue]

Cold-rolled steel (see <u>Table 7.5</u>) is used for pressed cages. High-tensile-strength brass castings or machined-steel are used for machined cages (see <u>Tables 7.6</u> and <u>7.7</u>). Polyamide resin are used depending on the type of bearing and the application.

For selection of cage material, it is important to consider the operating conditions.

Polyamide cages should not be used at temperatures above 120°C or below -40°C.

Polyamide cages should not be used in vacuum because they become brittle due to dehydration.

Polyamide cages may be affected by the use of specific lubricants.

Brass cages should not be used at temperatures in excess 300°C.

Brass cages are not suitable in Ammonia (e.g. in refrigeration) because Ammonia causes season cracking in brass.

<u>Table 7.1 High-Carbon Chrome Bearing Steel</u>

<u>Table 7.2 Case Hardening Steel</u>

Table 7.3 High-Speed Steel

Table 7.4 Stainless Steel

Table 7.5 Cold Rolled Steel Strip and Cold Rolled Steel Sheet and Plate for Pressed Cage

Table 7.6 High Tensile Strength Brass Casting for Machined Cage

Table 7.7 Steel for Machined Cage

Table 7.1 High-Carbon Chrome Bearing Steel

Standard	Symbol			Chemic	al compositio	on (%)		
Standard	Symbol	С	Si	Mn	Р	S	Cr	Мо
JIS	SUJ 2 SUJ 3 SUJ 4 SUJ 5	0.95 ~ 1.10 0.95 ~ 1.10 0.95 ~ 1.10 0.95 ~ 1.10	0.15 ~ 0.35 0.40 ~ 0.70 0.15 ~ 0.35 0.40 ~ 0.70	≤ 0.50 0.90 ~ 1.15 ≤ 0.50 0.90 ~ 1.15	≤ 0.025 ≤ 0.025 ≤ 0.025 ≤ 0.025	≤ 0.025 ≤ 0.025 ≤ 0.025 ≤ 0.025	1.30 ~ 1.60 0.90 ~ 1.20 1.30 ~ 1.60 0.90 ~ 1.20	≤ 0.08 ≤ 0.08 0.10 ~ 0.25 0.10 ~ 0.25
SAE	52100	0.98 ~ 1.10	0.15 ~ 0.35	0.25 ~ 0.45	≤ 0.025	≤ 0.025	1.30 ~ 1.60	≤ 0.10

Table 7.2 Case Hardening Steel

Standard	Cumbal		Chemical composition (%)								
Standard	Symbol	С	Si	Mn	Р	S	Ni	Cr	Мо		
JIS	SNCM220 SNCM420 SNCM815 SCr420	0.17 ~ 0.23 0.12 ~ 0.18	0.15 ~ 0.35	0.60 ~ 0.90 0.40 ~ 0.70 0.30 ~ 0.60 0.60 ~ 0.85	≤ 0.030 ≤ 0.030	≤ 0.030 ≤ 0.030	1.60 ~ 2.00	0.40 ~ 0.65 0.40 ~ 0.65 0.70 ~ 1.00 0.90 ~ 1.20	0.15 ~ 0.30		
SAE	8620 4320	0.18 ~ 0.23 0.17 ~ 0.22	0.15 ~ 0.35 0.15 ~ 0.35		≤ 0.035 ≤ 0.035		0.40 ~ 0.70 1.65 ~ 2.00	0.40 ~ 0.60 0.40 ~ 0.60			

Table 7.3 High-Speed Steel

Stan-	Cumbal					Chen	nical com	position (%	%)				
dard	Symbol	С	Si	Mn	Р	S	Cr	Мо	V	Ni	Cu	Со	W
AISI	M50	0.77 ~ 0.85	≤ 0.25	≤ 0.35	≤ 0.015	≤ 0.015	3.75 ~ 4.25	4.00 ~ 4.50	0.90 ~ 1.10	≤ 0.15	≤ 0.10	≤ 0.25	≤ 0.25

Table 7.4 Stainless Steel

Standard	Cymbol		(%)					
Standard	Symbol	С	Si	Mn	Р	S	Cr	Мо
JIS	SUS440C	0.95 ~ 1.20	≤ 1.00	≤ 1.00	≤ 0.040	≤ 0.030	16.00 ~ 18.00	≤ 0.75

Table 7.5 Cold Rolled Steel Strip and Cold Rolled Steel Sheet and Plate for Pressed Cage

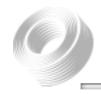

Standard	Symbol		Chem	ical composition	(%)	
Stariuaru	Зупрог	С	Si	Mn	Р	S
BAS	SPB 1 SPB 2	≤ 0.10 0.13 ~ 0.20	≤ 0.04 ≤ 0.04	0.25 ~ 0.45 0.25 ~ 0.60	≤ 0.030 ≤ 0.030	≤ 0.030 ≤ 0.030
JIS	SPCC	≤ 0.12	_	≤ 0.50	≤ 0.040	≤ 0.045

Table 7.6 High Tensile Strength Brass Casting for Machined Cage

Ctandard	Symbol				Chemica	al composit	ion (%)				
Stariuaru	Symbol	Cu	Zn	Mn	Fe	Al	Sn	Ni	Pb	Si	Others
BAS	HB _S CR	55.0 ~ 62.0	33.0 ~ 37.0	2.0 ~ 4.0	0.5 ~ 1.5	0.1 ~ 1.0	0.1 ~ 1.0	≤ 1.0	0.1 ~ 1.0	≤ 0.2	≤ 1.0
JIS	_		Residue 30.0 ~ 42.0					≤ 1.0 ≤ 1.0	≤ 0.4 ≤ 0.4	≤ 0.1 ≤ 0.1	- -

Table 7.7 Steel for Machined Cage

Standard	Symbol		Chemic	al composition	(%)	
Stariuaru	Symbol	С	Si	Mn	Р	S
JIS	S25C	0.22 ~ 0.28	0.15 ~ 0.35	0.30 ~ 0.60	≤ 0.030	≤ 0.035

8. Application of Bearings

8.2 Preload and Rigidity	
8.3 Shaft and Housing Selection	
8.4 Sealing Devices	
8.5 Lubrication	
8.6 Speed Limits	
8.7 Friction and Temperature Rise	
8.8 Mounting and Dismounting	

8. Application of Rolling Contact Bearings

8.1 Fits and Clearance

8.1.1 Importance of Fit

To get the best performance from a rolling contact bearing, the fit between the inner ring and shaft, and outer ring and housing must be correct. If the mating surfaces lack interference, the bearing ring may move circumferentially on the shaft or in the housing. This phenomenon is called creep. Once mating surfaces start to creep, the bearing ring will begin to wear excessively and the shaft and/or housing may be damaged. Abrasive debris may enter the bearing to cause abnormal heating or vibration.

Creep is often impossible to prevent by mere fastening of the bearing in an axial direction. To prevent creep, the bearing rings that support the rotating load must be provided with necessary interference. The bearing rings that support stationary load normally do not require interference unless contact corrosion from vibration is a concern.

8.1.2 Selection of Fit

To select the most appropriate fit, the following items must be considered:

- direction of load
- · characteristics of load
- magnitude of load
- temperature conditions
- mounting, and dismounting conditions

For general recommendations see <u>Table 8.1</u>.

For mounting bearings in a thin-walled housing or on a hollow shaft, large interference than normal must be provided.

Split-housing applications requiring high precision or tight housing bore fits are not recommended. (A split housing may cause the outer ring to deform).

For application of bearings subjected to vibration, an interference fit should be applied to both inner and outer rings.

<u>Tables 8.2 through 8.14</u> describe general fit recommendations. For fits not covered by these tables, please contact NACHI.

Table 8.1 Fits vs. Load Characteristics

Fits of Inch Series Tapered Roller Bearings with Shafts

Table 8.8.1 For Bearings with ABMA Classes 4 and 2 Table 8.8.2 For Bearings with ABMA Classes 3 and 0

Table 8.2.1 Bearing Bore (1) Fits for Radial Bearings

Fits of Inch Series Tapered Roller Bearings with Housings

Table 8.9.1 For Bearings with ABMA Classes 4 and 2 Table 8.9.2 For Bearings with ABMA Classes 3 and 0

Table 8.2.2 Bearing Outside Diameter (1) Fits for Radial Bearings

Amounts of Fits: Radial Bearings with Tolerance JIS Class 0 (ISO Normal Class)

Table 8.10.1 Inner Ring with Shaft
Table 8.10.2 Outer Ring with Housing

Table 8.3.1 Bearing Bore or Center Washer Bore (1) Fits for Thrust Bearings

Amounts of Fits: Radial Bearings with Tolerance JIS (ISO) Class 6

Table 8.3.2 Bearing Outside Diameter (1) Fits for Thrust Bearings

Table 8.11.1 Inner Ring with Shaft
Table 8.11.2 Outer Ring with Housing

Table 8.4 Shaft Tolerances (1) for Radial Bearings

Amounts of Fits: Radial Bearings with Tolerance JIS (ISO) Class 5

Table 8.12.1 Inner Ring with Shaft Table 8.12.2 Outer Ring with Housing

 Table 8.5
 Shaft Tolerances for Thrust Bearings

Amounts of Fits: Radial Bearings with Tolerance JIS (ISO) Class 4

Table 8.6 Housing Bore Tolerances (1) for Radial Bearings (Except Inch-series Tapered Roller Bearings)

Table 8.13.1 Inner Ring with Shaft Table 8.13.2 Outer Ring with Housing

Amounts of Fits: Thrust Bearings with Tolerance JIS (ISO) Class 0

 Table 8.7 Housing Bore Tolerances for Thrust Bearings

Table 8.14.1 Shaft Washer or Center Washer with Shaft Table 8.14.2 Housing Washer with Housing

Table 8.1 Fits vs. Load Characteristics

Potating condition	Type of load	Load	F	it
Rotating condition	Type of load	conditions	Inner ring	Outer ring
inner ring	Non-rotating	Rotating inner ring load		Loose fit
outer ring	Rotating	Stationary outer ring load	Interference fit	Loose III
outer ring	Non-rotating	Rotating outer ring load	Loose fit	Interference fit
inner ring	Rotating	Stationary inner ring load		
Load direction not constant because of fluctuation unbalanced load	Rotating or Non-rotating	Indeterminate direction load	Interference fit	Interference fit

Table 8.2.1 Bearing Bore (1) **Fits for Radial Bearings**

Bearing tolerance				Fit cla	ss vs. load ty	/pe			
class						For rota outer ri	ating ng load		
Class 0, class 6	r 6	р6	n 6	m 5 m 6	k 5 k 6	j 5 j 6 js 6	h 5	h 5 h 6	g 5 g 6
Class 5, class 4	_	_	_	m 5	k 4	js 4	h 4	h 5	_

Table 8.2.2 Bearing Outside Diameter (1) Fits for Radial Bearings

Bearin	ng tolerance					Fit class vs. load type					
class		F	or rotating i	nner ring loa	ad	For indete	erminate dire	ection load	For rota	ating outer r	ing load
Clas	s 0, class 6	_	J 6 J 7	H 6 H 7	G 7	M 7	K 6 K 7	J 6 J 7	P 7	N 7	M 7
Clas	s 5, class 4	K 5	Js 5	H 5	_	_	_	_	_	_	M 5

Table 8.3.1 Bearing Bore or Center Washer Bore (1) Fits for Thrust Bearings

Bearing tole	erance		Fi	t class vs. load type		
class	class For cen		Fo	or composite load (sphe	erical roller thrust bea	ring)
Class (0	j 6 js 6	n 6	m 6	k 6	j 6 js 6

Table 8.3.2 Bearing Outside Diameter (1) Fits for Thrust Bearings

Bearing tolerance		Fit class vs. load type			
class	For centric axial load	For composite load (sph	nerical roller thrust bearing)		
Class 0	_	M 7	H 7		

Note: (1) These dimensional fits are based on JIS B 1514.

(1	/3	١
•	-		,

	()narating conditions Oyliidida idiei						
Opera			Bell bearings Spherical roller Spherical roller		Tolerance symbols	Remarks	Examples of application (Reference)
Bearings with cylindrical bo					е		
Rotating outer ring	When the inner ring is required to move on the shaft easily	For a	For all shaft diameters			When high precision is required, adopt g5 and h5 respectively. For large bearings, f6	Driven wheel
load	When the inner ring is required to move on the shaft easily	For all shaft diameters		h6	is adopted because of easy bearing movement in axial direction.	Tension pully, rope sheave	

Note: (1) Shaft tolerances in this table are applied to solid steel shaft for bearings with tolerance class 0 and 6.

Remarks: Heavy load P > 0.12Cr, Normal Load $0.06Cr < P \le 0.12Cr$, Light Load $P \le 0.06Cr$ Cr: Basic Dynamic Load Rating

(2	/31	

		Sha	ft diameter (r	mm)				
Operat	Operating conditions		Cylindrical roller bearings Tapered roller bearings	Spherical roller bearings	Tolerance symbols	Remarks	Examples of application (Reference)	
		18 under and incl.	_	_	h5	When high precision		
	Light load or	18 Over 100 Incl.	40 under and incl.	_	j6	is required, adopt j5, k5 and m5 instead of	Electrical appliance,	
	fluctuating load	100 Over 200 Incl.	40 Over 140 Incl.	_	k6	j6, k5 and m6	machining tool, pump, blower, haulage car	
		_	140 Over 200 Incl.	_	m6	respectively		
		18 under and incl.	_	_	j5			
Rotating		18 Over 100 Incl.	40 under and incl.	40 under and incl.	k5	The tolerances of k6 and m6 instead of k5 and m5 can be used	Electric motor, turbine, pump, internal combustion engine, wood working machine, bearing application in general.	
inner ring load or	Normal load	100 Over 200 Incl.	40 Over 100 Incl.	40 Over 65 Incl.	m5			
indeterminate direction	or	_	100 Over 140 Incl.	65 Over 100 Incl.	m6	for single row tapered		
load	heavy load	_	140 Over 200 Incl.	100 Over 140 Incl.	n6	roller bearings and single row angular		
		_	200 Over 400 Incl.	140 Over 200 Incl.	p6	contact ball bearings.		
		_	_	280 Over	r6			
	Composite load	_	50 Over 140 Incl.	50 Over 100 Incl.	n6	A bearing with an	Axles of locomotive and	
		_	140 Over 200 Incl.	100 Over 140 Incl.	p6	internal clearance larger than the normal	passenger train, traction	
		_	200 Over	140 Over	r6	clearance is required	motor	

Note: (1) Shaft tolerances in this table are applied to solid steel shaft for bearings with tolerance class 0 and 6.

Remarks: Heavy load P > 0.12Cr, Normal Load $0.06Cr < P \le 0.12Cr$, Light Load $P \le 0.06Cr$ Cr: Basic Dynamic Load Rating

(3/3)

	Sha	ıft diameter (ı	mm)			_	
Operating conditions	Bell bearings	Cylindrical roller bearings Tapered roller bearings	Spherical roller bearings	Tolerance symbols	Remarks	Examples of application (Reference)	
Centric axial load	25	50 under and in	ncl.	j6			
		250 Over		js6, j6	_	_	
	Bearing	with tapered	l bore (with sl	eeve)			
For all load condition	Bearing with tapered bore (with sle			h9/IT5	h10/IT7 instead of h9/IT5 can be used for power transmission shaft. IT5 and IT7 mean the form error (out of roundness, taper) should be limited within the tolerance ranges of IT5 and IT7	Railroad car axle, bearing application in general	

Note: (1) Shaft tolerances in this table are applied to solid steel shaft for bearings with tolerance class 0 and 6.

 $Remarks: \ Heavy \ load \quad P > 0.12Cr \quad , \quad Normal \ Load \quad 0.06Cr < P \leq 0.12Cr \quad , \quad Light \ Load \quad P \leq 0.06Cr \quad Cr: \ Basic \ Dynamic \ Load \ Rating \quad P = 0.06Cr \quad Cr: \ Basic \ Dynamic \ Load \ Rating \quad P = 0.06Cr \quad Cr: \ Basic \ Dynamic \ Load \ Rating \quad P = 0.06Cr \quad Cr: \ Basic \ Dynamic \ Load \ Rating \quad P = 0.06Cr \quad Cr: \ Basic \ Dynamic \ Load \ Rating \quad P = 0.06Cr \quad Cr: \ Basic \ Dynamic \ Load \ Rating \quad P = 0.06Cr \quad Cr: \ Basic \ Dynamic \ Load \ Rating \quad P = 0.06Cr \quad Cr: \ Basic \ Dynamic \ Load \ Rating \quad P = 0.06Cr \quad Cr: \ Basic \ Dynamic \ Load \ Rating \quad P = 0.06Cr \quad Cr: \ Basic \ Dynamic \ Load \ Rating \quad P = 0.06Cr \quad Cr: \ Basic \ Dynamic \ Load \ Rating \quad P = 0.06Cr \quad Cr: \ Basic \ Dynamic \ Load \ Rating \quad P = 0.06Cr \quad Cr: \ Basic \ Dynamic \ Load \ Rating \quad P = 0.06Cr \quad Cr: \ Basic \ Dynamic \ Load \ Rating \quad P = 0.06Cr \quad Cr: \ Basic \ Dynamic \ Load \ Rating \quad P = 0.06Cr \quad Cr: \ Basic \ Dynamic \ Load \ Rating \quad P = 0.06Cr \quad Cr: \ Basic \ Dynamic \$

Table 8.5 Shaft Tolerances for Thrust Bearings

Operating	conditions	Shaft diameter (mm)	Tolerance symbols
Centric a	xial load	250 under and incl.	j6
(Thrust ball bearings and spl	nerical roller thrust bearings)	250 Over	js6, j6
	Deteting outer sing load	250 under and incl.	j6
	Rotating outer ring load	250 Over	js6, j6
Composite load (Spherical roller thrust bearings)		200 under and incl.	k6
(ophenical roller till dot bearings)	Rotation inner ring load or indeterminate direction load	200 Over 400 Incl.	m6
	indeterminate direction load	400 Over	n6

Table 8.7 Housing Bore Tolerances for Thrust Bearings

Operating	g conditions	Tolerance symbols	Remarks
Centric axial load	Thrust ball bearing	Н8	When high accuracy is not required, radial clearance will be provided between outer ring (housing washer)/aligning housing washer and housing
(All thrust bearings)	Spherical roller thrust bearing; When housing is located in radial direction by another bearing.	-	0.001D is recommended as a radial clearance between outer ring and housing. D: outside diameter of housing washer
Composite load	Stationary outer ring load or indeterminate direction load	H7 J7	_
(Spherical roller thrust bearings)	Rotating outer ring load	K7 M7	In case when the radial load is comparatively large, bearing application in general

Table 8.6 Housing Bore Tolerances (1) for Radial Bearings (Except Inch-series Tapered Roller Bearings)

	Оре	rating conditions	Tolerance symbols	Outer ring movement (2)	Examples of application (Reference)
		When a heavy load is applied to a thin-walled housing or impact load	P7		Automotive wheel (roller bearing)
	Rotating outer ring load	Normal load or heavy load	N7	Outer ring can not be moved in axial	Automotive wheel (ball bearing)
Monoblock housing		Light load or fluctuating load	- M7	direction.	Conveyer roller, pulley, tension pulley
		Heavy impact load	IVI7		Traction motor
	Indeterminate direction load	Heavy load or normal load; When the outer ring is not required to move in axial direction	K7	Outer ring can not be moved in axial direction as a rule.	Electric motor, pump, crank shaft
		Normal load or light load; When it is desirable that the outer ring can be moved in axial direction	- J7	Outer ring can be moved in axial	Electric motor, pump, crank shaft
		Impact load; When no-load condition occurs instantaneously	37	direction.	Railroad car axle
Monoblock or split housing	_	All kinds of load	H7		Railroad car axle, bearing application in general
	ring load	Normal load or light load	H8	Outer ring can be moved easily in axial direction.	Gear transmission
		When thermal conduction through the shaft is caused	G 7		Paper mill (Drying cylinder)

Note: (1) The tolerances in this table are applied to cast iron or steel housing for bearings with tolerance class 0 and 6. Tighter fit is adopted for light alloy housing.

(2) Outer ring of non-separable bearing

(2/2)

Table 8.6 Housing Bore Tolerances (1) for Radial Bearings (Except Inch-series Tapered Roller Bearings)

	Ope	rating conditions	Tolerance symbols	Outer ring movement (2)	Examples of application (Reference)
		Fluctuating load; When extremely	N6	Outer ring can not be moved in axial	Main shaft of machine tool (roller bearing, outside diameter is over 125 mm)
Monoblock	When extremely high accuracy is required	accurate rotation and high rigidity are required	M6	direction.	Main shaft of machine tool (roller bearing outside diameter is under and including 125 mm)
housing		Indeterminate direction light load; When extremely accurate rotation is required.	K6	Outer ring can not be moved in axial direction as a rule.	Main shaft of grinding machine, ball bearing on grinding wheel side High speed centrifugal compressor, clamping side bearing
		When extremely accurate rotation is required and it is desirable that the outer ring can be moved in axial direction.	J6	Outer ring can be moved in axial direction.	Main shaft of grinding machine, ball bearing on driving side High speed centrifugal compressor, floating side bearing

Note: (1) The tolerances in this table are applied to cast iron or steel housing for bearings with tolerance class 0 and 6. Tighter fit is adopted for light alloy housing.

(2) Outer ring of non-separable bearing

Table 8.8 Fits of Inch Series Tapered Roller Bearings with Shafts

Table 8.8.1 For Bearings with ABMA Classes 4 and 2

Unit: μ m

	Operating co	onditions	Bearing bo Nomina	re diameter d (mm)		g bore ation	Shaft diamet	er deviation	Amou	nts ⁽¹⁾
	Operating of	oriditions	Over	Incl.	High	Low	High	Low	Max	Min
Rota-	Normal load No impact		- 76.2 304.8 609.6	76.2 304.8 609.6 914.4	+13 +25 +51 +76	0 0 0	+ 38 + 64 +127 +191	+ 26 + 38 + 76 +114	38T 64T 127T 191T	12T 13T 25T 38T
inner ring load	Heavy load High speed rotation Impact load		- 76.2 304.8 609.6	76.2 304.8 609.6 914.4	+13 +25 +51 +76	0 0 0	+ 64 { +381	+ 38 +305	64T (2) 381T	25T } 229T
Rota-	Normal load No impact	Non-ground shaft (When the inner ring is not required to move in axial direction.)	- 76.2 304.8 609.6	76.2 304.8 609.6 914.4	+13 +25 +51 +76	0 0 0 0	+ 13 + 25 + 51 + 76	0 0 0 0	13T 25T 51T 76T	13L 25L 51L 76L
outer ring load	Normal load No impact	Ground shaft (When the inner ring is required to move in axial direction)	- 76.2 304.8 609.6	76.2 304.8 609.6 914.4	+13 +25 +51 +76	0 0 0 0	0 0 0 0	- 13 - 25 - 51 - 76	0 0 0 0	26L 51L 102L 152L

Note:

(1) T: Tight fit L: Loose fit

(2) Mean amounts of tight fits are d/2000 mm

	Operating conditions		re diameter I d (mm)		g bore ation	Shaft diamete	er deviation	Amour	nts ⁽¹⁾
	Operating conditions	Over	Incl.	High	Low	High	Low	Max	Min
Rota-	Main shaft of precision machine tool	- 304.8 609.6	304.8 609.6 914.4	+13 +25 +38	0 0 0	+ 38 + 64 +102	+18 +38 +63	31T 64T 102T	5T 13T 25T
inner ring load	Heavy load High speed rotation Impact load	76.2 304.8 609.6	76.2 304.8 609.6 914.4	+13 +13 +25 +38	0 0 0	{	()	2)	}
Rota- ting outer ring load	Main shaft of precision machine tool	304.8 609.6	304.8 609.6 914.4	+13 +25 +38	0 0 0	+ 13 + 64 +102	+18 +38 +63	31T 64T 102T	5T 13T 25T

Note:

(1) T: Tight fit L: Loose fit

(2) Mean amounts of tight fits are d/4000mm

(3) This table is not applied to the bearing with tolerance class 0 whose bore diameter is over 241.3 mm

Table 8.9 Fits of Inch Series Tapered Roller Bearings with Housings

Table 8.9.1 For Bearings with ABMA Classes 4 and 2

Unit: μ m

O	perating conditions	Bearing outs Nominal	ide diameter D (mm)	_	outside deviation	Housin diameter	_	Amour	nts ⁽¹⁾
		Over	Incl.	High	Low	High	Low	Max	Min
	Floating side or Clamping side	76.2 127.0 304.8 609.6	76.2 127.0 304.8 609.6 914.4	+25 +25 +25 +51 +76	0 0 0 0	+ 76 + 76 + 76 +152 +229	+ 50 + 50 + 50 +102 +152	25L 25L 25L 51L 76L	76L 76L 76L 152L 229L
ring	Outer ring location in axial direction can be adjusted	76.2 127.0 304.8 609.6	76.2 127.0 304.8 609.6 914.4	+25 +25 +25 +51 +76	0 0 0 0	+ 25 + 25 + 51 + 76 +127	0 0 0 + 26 + 51	25T 25T 25T 25T 25T	25L 25L 51L 76L 127L
-	Outer ring location in axial direction can not be adjusted	76.2 127.0 304.8 609.6	76.2 127.0 304.8 609.6 914.4	+25 +25 +25 +51 +76	0 0 0 0	1325252525	- 39 - 51 - 51 - 76 -102	64T 76T 76T 127T 178T	13T 25T 25T 25T 25T 25T
Rotating outer ring load	outer axial direction can ing not be adjusted		76.2 127.0 304.8 609.6 914.4	+25 +25 +25 +51 +76	0 0 0 0	1325252525	- 39 - 51 - 51 - 76 -102	64T 76T 76T 127T 178T	13T 25T 25T 25T 25T 25T

Note: (1) T: Tight fit L: Loose fit

O	perating conditions	Bearing outs Nominal	ide diameter D (mm)		outside deviation	Housing diameter o		Amour	nts ⁽¹⁾
	- -	Over	Incl.	High	Low	High	Low	Max	Min
	Floating side	152.4 304.8 609.6	152.4 304.8 609.6 914.4	+13 +13 +25 +38	0 0 0	+38 +38 +64 +89	+26 +26 +38 +51	13L 13L 13L 13L	38L 38L 64L 89L
Rotating inner	Clamping side	152.4 304.8 609.6	152.4 304.8 609.6 914.4	+13 +13 +25 +38	0 0 0	+25 +25 +51 +76	+13 +13 +25 +38	0 0 0	25L 25L 51L 76L
ring load	Outer ring location in axial direction can be adjusted	152.4 304.8 609.6	152.4 304.8 609.6 914.4	+13 +13 +25 +38	0 0 0	+13 +25 +25 +38	0 0 0 0	13T 13T 25T 38T	13L 25L 25L 38L
	Outer ring location in axial direction can not be adjusted	152.4 304.8 609.6	152.4 304.8 609.6 914.4	+13 +13 +25 +38	0 0 0	0 0 0 0	-12 -25 -26 -38	25T 38T 51T 76T	0 0 0 0
Rotating outer ring load	Normal load Outer ring location in axial direction can not be adjusted	152.4 304.8 609.6	152.4 304.8 609.6 914.4	+13 +13 +25 +38	0 0 0	-13 -13 -13 -13	-25 -38 -39 -51	38T 51T 64T 89T	13T 13T 13T 13T

Note: (1) T: Tight fit L: Loose fit

⁽²⁾ This tables is not applied to the bearing with tolerance class 0 whose bore diameter is over 304.8 mm.

Table 8.10 Amounts of Fits: Radial Bearings with Tolerance JIS Class 0 (ISO Normal Class)

Table 8.10.1 Inner Ring with Shaft

(1/2)

Nominal diameter	mean	plane bore			S	Shaft w	ith toler	ance gr	ade IT	5			
diam	neter		neter ation	m	15	k	5	j	5	h	15	Ç	j 5
(m	m)	of be $\triangle d$	aring mp	Tig	ght	Tiç	ght	Tight	Loose	Tight	Loose	Tight	Loose
Over	Incl.	High	Low	Max	Max Min		Min	Max	Max	Max	Max	Max	Max
3 6 10	6 10 18	0 0 0	- 8 - 8 - 8	_ _ _	_ _ _	- - 17	_ _ 1	11 12 13	2 2 3	8 8 8	5 6 8	4 3 2	9 11 14
18 30 50 80	30 50 80 120	0 0 0 0	-10 -12 -15 -20	- 32 39 48	- 9 11 13	21 25 30 38	2 2 2 3	15 18 21 26	4 5 7 9	10 12 15 20	9 11 13 15	3 3 5 8	16 20 23 27
120 140 160	140 160 180	0	-25	58	15	46	3	_	_	25	18	11	32
180 200 225	200 225 250	0	-30	67	17	54	4	_	_	30	20	15	35
250 280	280 315	0	-35	_	_	_	_	_	_	35	23	18	40
315 355	355 400	0	-40	_	_	_	_	_	_	40	25	22	43
400 450	450 500	0	– 45	_	_	_	_	_	_	45	27	25	47

Table 8.10.1 Inner Ring with Shaft

(2/2)

Nom	ninal						,	Shaft wi	th toler	ance gra	ade IT6						
diam		r	6	p	6	n	6	m	16	k	6	j	6	ŀ	16	Ç	<u> </u>
(m	m)	Tiç	ght	Tig	jht	Tiç	ght	Tiç	ght	Tiç	ght	Tight	Loose	Tight	Loose	Tight	Loose
Over	Incl.	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Max	Max	Max	Max	Max
3 6 10	6 10 18	- - -	_ _ _	- - -	_ _ _	- - -	_ _ _	- - -	_ _ _	- - 20	- - 1	14 15 16	2 2 3	8 8 8	8 9 11	4 3 2	12 14 17
18 30 50 80	30 50 80 120	- - - -	_ _ _ _	- - - 76	- - - 37	– 45 54 65	- 17 20 23	- 37 45 55	- 9 11 13	25 30 36 45	2 2 2 3	19 23 27 33	4 5 7 9	10 12 15 20	13 16 19 22	3 3 5 8	20 25 29 34
120 140 160	140 160 180	113 115 118	63 65 68	93	43	77	27	65	15	53	3	39	11	25	25	11	39
180 200 225	200 225 250	136 139 143	77 80 84	109	50	90	31	76	17	63	4	46	13	30	29	15	44
250 280	280 315	161 165	94 98	123	56	_	_	_	_	_	_	51	16	35	32	18	49
315 355	355 400	184 190	108 114	138	62	_	_	_	_	_	_	58	18	40	36	22	54
400 450	450 500	211 217	126 132	_	_	_	_	_	_	_	_	65	20	45	40	26	60

Table 8.10 Amounts of Fits: Radial Bearings with Tolerance JIS Class 0 (ISO Normal Class)

Table 8.10.2 Outer Ring with Housing

(1/2)

Nor	ninal	Single pla			Housin	g with tol	erance gra	ıde IT6	
diar	neter	devia		K	(6	·	J6	F	 16
(m	nm)	of be $\triangle D$		Tight	Loose	Tight	Loose	Tight	Loose
Over	Incl.	High Low		Max	Max	Max	Max	Max	Max
6 10 18	10 18 30	0 0 0	- 8 - 8 - 8	7 9 11	10 10 11	4 5 5	13 14 17	0 0 0	17 19 22
30 50 80	50 80 120	0 0 0	-11 -13 -15	13 15 18	14 17 19	6 6 6	21 26 31	0 0 0	27 32 37
120 150 180	150 180 250	0 0 0	-18 -25 -30	21 21 24	22 29 35	7 7 7	36 43 52	0 0 0	43 50 59
250 315 400	315 400 500	0 -35 0 -40 0 -45		27 29 32	40 47 53	7 7 7	60 69 78	0 0 0	67 76 85

Table 8.10.2 Outer Ring with Housing

(2/2)

Non	Nominal diameter						Housir	g with to	olerance g	grade IT	7				
dian	neter	Р	7		17	N	17	k	(7		J7	ŀ	1 7	(G7
(m	nm)	Tig	ght	Tight	Loose	Tight	Loose	Tight	Loose	Tight	Loose	Tight	Loose	Lc	ose
Over	Incl.	Max	Min	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	Min	Max
6	10	24	1	19	4	15	8	10	13	7	16	0	23	5	28
10	18	29	3	23	3	18	8	12	14	8	18	0	26	6	32
18	30	35	5	28	2	21	9	15	15	9	21	0	30	7	37
30	50	42	6	33	3	25	11	18	18	11	25	0	36	9	45
50	80	51	8	39	4	30	13	21	22	12	31	0	43	10	53
80	120	59	9	45	5	35	15	25	25	13	37	0	50	12	62
120	150	68	10	52	6	40	18	28	30	14	44	0	58	14	72
150	180	68	3	60	13	40	25	28	37	14	51	0	65	14	79
180	250	79	3	60	16	46	30	33	43	16	60	0	76	15	91
250	315	88	1	66	21	52	35	36	51	16	71	0	87	17	104
315	400	98	1	73	24	57	40	40	57	18	79	0	97	18	115
400	500	108	0	80	28	63	45	45	63	20	88	0	108	20	128

Table 8.11 Amounts of Fits: Radial Bearings with Tolerance JIS (ISO) Class 6

Table 8.11.1 Inner Ring with Shaft

(1/2)

				3										
	Non	ninal	Single mean	plane bore			S	Shaft w	ith toler	ance gr	ade IT	5		
	diam	neter	diam devia	ation	m	15	k	5	j	5	ŀ	15		3 5
	(m	m)	of be $ extstyle extstyle d$		Tig	ght	Tiç	ght	Tight	Loose	Tight	Loose	Tight	Loose
(Over	Incl.	High	Low	Max	Min	Max	Min	Max	Max	Max	Max	Max	Max
	3 6 10	6 10 18	0 0 0	- 7 - 7 - 7	_ _ _	_ _ _	- - 16	_ _ 1	10 11 12	2 2 3	7 7 7	5 6 8	3 2 1	9 11 14
	18 30 50 80	30 50 80 120	0 0 0	- 8 -10 -12 -15	- 30 36 43	- 9 11 13	19 23 27 33	2 2 2 3	13 16 18 21	4 5 7 9	8 10 12 15	9 11 13 15	1 1 2 3	16 20 23 27
	120 140 160	140 160 180	0	-18	51	15	39	3	_	_	18	18	4	32
	180 200 225	200 225 250	0	-22	59	17	46	4	_	_	22	20	7	35

Table 8.11.1 Inner Ring with Shaft

(2/2)

Nom	Nominal						,	Shaft wi	th toler	ance gra	ade IT6						
diam	neter	r	6	р	6	n	6	m	16	k	6	j	6	r	16	Ç	g6
(m	m)	Tig	ght	Tig	ıht	Tiç	ght	Tiç	ght	Tig	ght	Tight	Loose	Tight	Loose	Tight	Loose
Over	Incl.	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Max	Max	Max	Max	Max
3 6 10	6 10 18	_ _ _	_ _ _	- - -	_ _ _	- - -	_ _ _	- - -	_ _ _	- - 19	- - 1	13 14 15	2 2 3	7 7 7	8 9 11	3 2 1	12 14 17
18 30 50 80	30 50 80 120	_ _ _ _	=======================================	- - - 74	- - - 37	- 43 51 60	- 17 20 23	- 35 42 50	- 9 11 13	23 28 33 40	2 2 2 3	17 21 24 28	4 5 7 9	8 10 12 15	13 16 19 22	1 1 2 3	20 25 29 34
120 140 160	140 160 180	106 108 111	63 65 68	86	43	70	27	58	15	46	3	32	11	18	25	4	39
180 200 225	200 225 250	128 131 135	77 80 84	101	50	82	31	68	17	55	4	38	13	22	29	7	44

Table 8.11 Amounts of Fits: Radial Bearings with Tolerance JIS (ISO) Class 6

Table 8.11.2 Outer Ring with Housing

(1/2)

dian	ninal neter nm)	Single pla outside d devia of bea ⊿De	k Tight	Housin 6 Loose	g with tol	H6 Tight Loose			
Over	Incl.	High	Low	Max	Max	Max	Max	Max	Max
6	10	0	- 7	7	9	4	12	0	16
10	18	0	- 7	9	9	5	13	0	18
18	30	0	- 8	11	10	5	16	0	21
30	50	0	- 9	13	12	6	19	0	25
50	80	0	-11	15	15	6	24	0	30
80	120	0	-13	18	17	6	29	0	35
120	150	0	–15	21	19	7	33	0	40
150	180	0	–18	21	22	7	36	0	43
180	250	0	–20	24	25	7	42	0	49
250 315	315 400	0	–25 –28	27 29	30 35	7 7	50 57	0	

Unit: μ m

Table 8.11.2 Outer Ring with Housing

(2/2)

Nominal							Housin	g with to	olerance (grade IT	7					
dian	neter	Р	P7		١7	N	/ 17	ŀ	< 7	,	J7	H7		(
(mm)		Tiç	ght	Tight	Loose	Tight	Loose	Tight	Loose	Tight	Loose	Tight	Loose	Lo	oose	
Over	Incl.	Max	Min	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	Min	Max	
6 10 18	10 18 30	24 29 35	2 4 6	19 23 28	3 2 1	15 18 21	7 7 8	10 12 15	12 13 14	7 8 9	15 17 20	0 0 0	22 25 29	5 6 7	27 31 36	
30 50 80	50 80 120	42 51 59	8 10 11	33 39 45	1 2 3	25 30 35	9 11 13	18 21 25	16 20 23	11 12 13	23 29 35	0 0 0	34 41 48	9 10 12	43 51 60	
120 150 180	150 180 250	68 68 79	13 10 13	52 60 60	3 6 6	40 40 46	15 18 20	28 28 33	27 30 33	14 14 16	41 44 50	0 0 0	55 58 66	14 14 15	69 72 81	
250 315	315 400	88 98	11 13	66 73	11 12	52 57	25 28	36 40	41 45	16 18	61 67	0	77 85	17 18	94 103	

Table 8.12 Amounts of Fits: Radial Bearings with Tolerance JIS (ISO) Class 5 Table 8.12.1 Inner Ring with Shaft

Nominal		Single mean	•			Shaft	with tol	erance gr	ade IT4			Shaft v	vith toler	ance gra	ade IT5	
	diam	neter	diam devia		m	14	k	4	j:	s4	h	14	m	15	ŀ	15
	(mm)		of be $\triangle d$	•	Tight		Tight		Tight Loose		Tight Loose		Tight		Tight	Loose
	Over	Incl.	High	Low	Max	Min	Max	Min	Max	Max	Max	Max	Max	Min	Max	Max
	3 6 10	6 10 18	0 0 0	- 5 - 5 - 5	13 15 17	4 6 7	10 10 11	1 1 1	7 7 7.5	2 2 2.5	5 5 5	4 4 5	14 17 20	4 6 7	5 5 5	5 6 8
	18 30 50	30 50 80	0 0 0	- 6 - 8 - 9	20 24 28	8 9 11	14 17 19	2 2 2	9 11.5 13	3 3.5 4	6 8 9	6 7 8	23 28 33	8 9 11	6 8 9	9 11 13
	80 120 180	120 180 250	0 0 0	-10 -13 -15	33 40 46	13 15 17	23 28 33	3 3 4	15 19 22	5 6 7	10 13 15	10 12 14	38 46 52	13 15 17	10 13 15	15 18 20

Table 8.12 Amounts of Fits: Radial Bearings with Tolerance JIS (ISO) Class 5

Table 8.12.2 Outer Ring with Housing

No	minal	Single pla			Housing with tolerance grade IT5									
dia	meter	devia		M	5	K	5	Js	5	H	5			
1)	mm)	of bearing 		Tight	Tight Loose Tight Loos		Loose	Tight	Loose	Tight	Loose			
Over	Incl.	High	Low	Max	Max	Max	Max	Max	Max	Max	Max			
6 10 18	10 18 30	0 0 0	- 5 - 5 - 6	10 12 14	1 1 1	5 6 8	6 7 7	3 4 4.5	8 9 10.5	0 0 0	11 13 15			
30 50 80	50 80 120	0 0 0	- 7 - 9 -10	16 19 23	2 3 2	9 10 13	9 12 12	5.5 6.5 7.5	12.5 15.5 17.5	0 0 0	18 22 25			
120 150 180	150 180 250	0 0 0	-11 -13 -15	27 27 31	2 4 4	15 15 18	14 16 17	9 9 10	20 22 25	0 0 0	29 31 35			
250 315	315 400	0	-18 -20	36 39	5 6	20 22	21 23	11.5 12.5	29.5 32.5	0	41 45			

Table 8.13 Amounts of Fits: Radial Bearings with Tolerance JIS (ISO) Class 4

Table 8.13.1 Inner Ring with Shaft

Nominal		Single mean	bore			Shaft	with tol	erance gi	ade IT4			Shaft v	Shaft with tolerance grade IT		
diam	neter	diam devia		m	14	k	4	j	s4	r	n4	m	m5		15
(mm)		of be $\triangle d$	•			Tight		Tight	Tight Loose		Tight Loose		Tight		Loose
Over	Incl.	High	Low	Max	Min	Max	Min	Max	Max	Max	Max	Max	Min	Max	Max
3 6 10	6 10 18	0 0 0	- 4 - 4 - 4	12 14 16	4 6 7	9 9 10	1 1 1	6 6 6.5	2 2 2.5	4 4 4	4 4 5	13 16 19	4 6 7	4 4 4	5 6 8
18 30 50	30 50 80	0 0 0	- 5 - 6 - 7	19 22 26	8 9 11	13 15 17	2 2 2	8 9.5 11	3 3.5 4	5 6 7	6 7 8	22 26 31	8 9 11	5 6 7	9 11 13
80 120 180	120 180 250	0 0 0	- 8 10 -12	31 37 43	13 15 17	21 25 30	3 3 4	13 16 19	5 6 7	8 10 12	10 12 14	36 43 49	13 15 17	8 10 12	15 18 20

Table 8.13 Amounts of Fits: Radial Bearings with Tolerance JIS (ISO) Class 4

Table 8.13.2 Outer Ring with Housing

Nor	ninal	Single pla			Housing with tolerance grade IT5									
dian	neter	devia		M	5	K	5	Js	5	H	5			
(m	nm)	of bearing $ extstyle eta D$ mp		Tight	Loose	Tight	Loose	Tight	Loose	Tight	Loose			
Over	Incl.	High	Low	Max	Max	Max	Max	Max	Max	Max	Max			
6 10 18	10 18 30	0 0 0	- 4 - 4 - 5	10 12 14	0 0 0	5 6 8	5 6 6	3 4 4.5	7 8 9.5	0 0 0	10 12 14			
30 50 80	50 80 120	0 0 0	- 6 - 7 - 8	16 19 23	1 1 0	9 10 13	8 10 10	5.5 6.5 7.5	11.5 13.5 15.5	0 0 0	17 20 23			
120 150 180	150 180 250	0 0 0	- 9 -10 -11	27 27 31	0 1 0	15 15 18	12 13 13	9 9 10	18 19 21	0 0 0	27 28 31			
250 315	315 400	0 0	-13 -15	36 39	0 1	20 22	16 18	11.5 12.5	24.5 27.5	0	36 40			

Table 8.14 Amounts of Fits: Thrust Bearings with Tolerance JIS (ISO) Class 0 **Table 8.14.1 Shaft Washer or Center Washer with Shaft**

Non	ninal	• •	e mean bore deviation					erance grad			
diam	neter	of be		n	6	m6		k	. 6	j6	
(m	m)	$ extstyle \Delta d$ mp		Tight		Tiọ	Tight		Tight		Loose
Over	Incl.	High	Low	Max	Min	Max	Min	Max	Min	Max	Max
6 10 18	10 18 30	0 0 0	- 8 - 8 -10	_ _ _	_ _ _	- - -	_ _ _	18 20 25	1 1 2	15 16 19	2 3 4
30 50 80	50 80 120	0 0 0	-12 -15 -20	_ _ _	_ _ _	_ _ _	_ _ _	30 36 45	2 2 3	23 27 33	5 7 9
120 180 250	180 250 315	0 0 0	-25 -30 -35	_ _ _	_ _ _	– 76 87	_ 17 20	53 63 –	3 4 –	39 46 51	11 13 16
315 400	400 500	0	-40 -45	_ 125	_ 40	97 -	21 -	_ _		58 65	18 20

Table 8.14 Amounts of Fits: Thrust Bearings with Tolerance JIS (ISO) Class 0

Table 8.14.2 Housing Washer with Housing

Nominal diameter (mm)	ninal	Single plane			Housing with tolerance grade IT7						
diam	neter	diameter of be		N	17	I	H7				
(m	m)	ΔL)mp	Tight	Loose	Tight	Loose				
Over	Incl.	High	Low	Max	Max	Max	Max				
10 18 30	18 30 50	0 0 0	-11 -13 -16	18 21 25	11 13 16	0 0 0	29 34 41				
50 80 120	80 120 180	0 0 0	-19 -22 -25	30 35 40	19 22 25	0 0 0	49 57 65				
180 250 315 400	250 315 400 500	0 0 0 0	-30 -35 -40 -45	46 52 57 63	30 35 40 45	0 0 0 0	76 87 97 108				

8.1.3 Calculating Fits

The fits for bearings are often determined empirically according to <u>Table 8.1 through Table 8.14</u>. These tables are NOT to be used for the following cases:

- If special materials are used for interfaces.
- If a hollow shaft is used.
- For high-precision applications.

(1) Reduction of Interference due to Bearing Load

When load is applied through a rotating inner ring, the ring will deform slightly and a gap will occur between the ring and the shaft at a position 180° from the point of load. This gap and "arc-of-no-contact" will increase as the load becomes heavier. A gearing effect will also occur due to the difference in diameters of rotation of the interfacing parts.

Formula (8.1) and Fig. 8.1 define the reduction (millimeters) in interference fit of the inner ring due to bearing load.

where:

$$\Delta dF = 0.08 \times 10^{-3} \sqrt{\frac{d}{B}} Fr \qquad \bullet \bullet \bullet \bullet \bullet \bullet (8.1)$$

∆dF : Reduction in interference of inner ring fit due to bearing load (mm)d : Bearing bore (shaft diameter) (mm)

B : Bearing inner ring width (mm)
Fr : Radial load on the bearing (N)

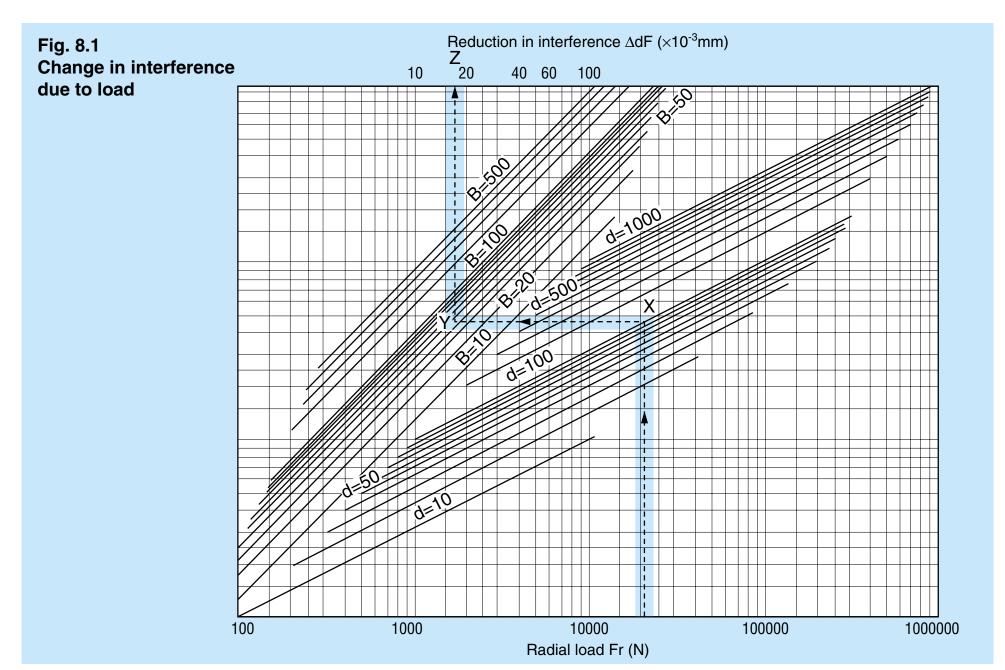
If the radial load is greater than 20% of the basic static load rating Cor, Formula (8.2) is to be used.

$$\Delta dF \ge 0.02 \times 10^{-3} \frac{Fr}{B}$$
 ••••• (8.2)

Calculation example: 6

Object: to obtain the amount of reduction in interference from bearing load where Fr on a single-row, Deep-groove ball bearing number 6320 is 21000N.

From the dimensional tables, d=100 mm, B=47 mm. From Fig. 8.1;


- (a) Find 21000 on the line of Fr. Move vertically and intersect the line of d=100 (at point X).
- (b) From the point X, move parallel with line Fr and intersect the line of B=47 (at point Y).
- (c) Extend vertically from point Y. The intercept with the chart upper limit at point Z indicates the reduction dF (mm) of interference. In this case, ΔdF loss=0.017 (mm).

[→Continue]

(2) Reduction in Interference due to temperature difference

Operating temperature differences will generally exist between the inner ring and shaft or the outer ring and bearing housing. Fits must be adjusted for differences of thermal expansion coefficients in the mating materials.

- If the bearing temperature is higher than that of the shaft, increase the fit.
- If heat is transferred through the shaft, the fit becomes tighter due to thermal expansion of the shaft. In such cases, increase the radial internal clearance of the bearing.
- When the outer ring temperature is higher than the housing, reduce the fit with the housing and the radial internal clearance of the bearing.
- If the housing temperature is hotter than the bearing outer ring, check the rates of thermal expansion. It will probably be necessary to increase the fit due to larger growth of the housing bore.

Reduction of interference fit of the inner ring due to temperature differentials can be calculated using Formula (8.3) and Fig. 8.2.

$$\Delta dT = 0.0015\Delta T \cdot d \cdot 10^{-3} \quad \bullet \bullet \bullet \bullet \bullet \bullet (8.3)$$

where:

ΔdT: Reduction in interference of inner ring fit due to temperature difference (mm)

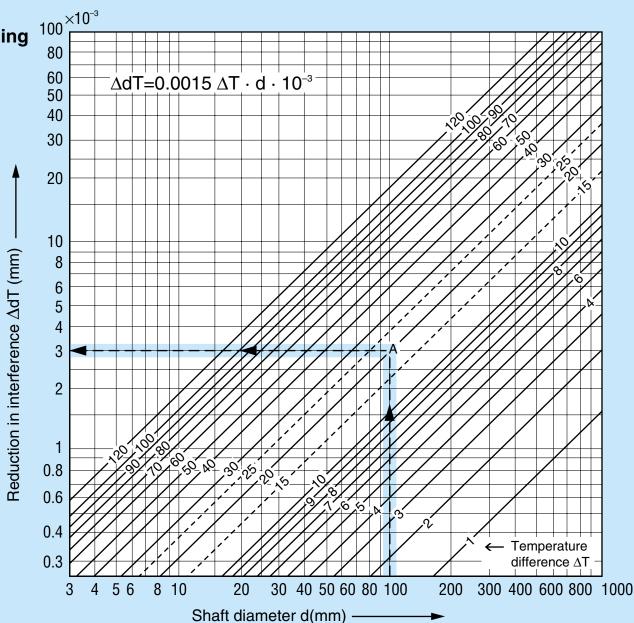
ΔT: Temperature difference between bearing and housing ambient (°C)

d: Bearing bore (shaft diameter) (mm)

Calculation example: 7

Obtain the reduction in interference for a temperature difference of 20°C existing between housing ambient temperature and internal temperature of a bearing with a bore diameter of 100 mm. From Fig. 8.2.

- (a) Find the bore diameter d=100 on the horizontal axis. Draw a vertical line from the point until it intersects the line of temperature difference of 20 °C at point A.
- (b) Extend a line horizontally from point A left to the Y-axis. The reduction in interference can be read from the intersection with the vertical axis as ΔdT =0.003mm.


Fig. 8.2 Reduction in Interference of Inner Ring Due to Temperature Difference

[→Continue]

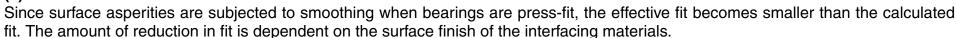


Fig. 8.2
Reduction in Interference of Inner Ring
Due to Temperature Difference

(3) Surface Finish Effects on Interference

Effective fit of the inner ring to a solid shaft is calculated using Formulas (8.4.1), and (8.4.2).

For ground and polished shafts,

$$\Delta de = \frac{d}{d+2} \Delta da$$
 ••••• (8.4.1)

where:

 Δde : Effective interference (mm) Δda : Calculated interference (mm)

d: Bearing bore diameter (mm)

For machined shafts,

$$\Delta de = \frac{d}{d+3} \Delta da \qquad \bullet \bullet \bullet \bullet \bullet \bullet (8.4.2)$$

(4) Necessary Interference for Inner Rings

Formulas (8.1), (8.2), (8.3), (8.4.1) and (8.4.2) have been used to calculate the effects of Load, Temperature, and Surface Finish in interference. To summarize the effects to a total required interference for the inner ring and shaft (where inner ring rotates against load), refer to Formulas (8.5.1) and (8.5.2).

For ground and polished shafts,

$$\Delta da \ge (\Delta dF + \Delta dT) \left(\frac{d+2}{d}\right)$$
 ••••• (8.5.1)

For machined shafts,

$$\Delta da \ge (\Delta dF + \Delta dT) \left(\frac{d+3}{d}\right)$$
 ••••• (8.5.2)

NACH

(5) Expansion Stress from Fits

When interference is provided, the bearing ring undergoes tensile stress. If the stress is excessive, the bearing ring will be damaged. When an inner ring is fitted to a solid steel shaft, stress, σ i, should be limited to 100MPa or smaller using Formula (8.6). Empirically, the criterion of interference 0.001 of shaft diameter,

where:

$$\sigma_i = \frac{E}{2} \cdot \frac{\Delta de}{d} \left\{ 1 + \left(\frac{d}{di} \right)^2 \right\}$$
 ••••• (8.6)

σi : Maximum bore diameter surface stress (MPa)
 E : Vertical elastic coefficient for steel: 2.07×10⁵ (MPa)

∆de : Effective interference (mm)d : Bearing bore diameter (mm)

di : Mean outside diameter of inner ring (mm)

: Bearing outside diameter (mm)

Cylindrical roller bearings; and Self-aligning ball bearings of series 22 and 23:

where:

D

All other bearings:

$$di = 0.1(3D+7d)$$

(6) Fits for Inner Rings with Hollow Shafts

Equivalent effective fit for a hollow shaft.

(a) Calculate the interference, Δ da for a solid shaft of the identical diameter inner ring with either Table 8.4 or Formulas (8.5.1) and (8.5.2).

(b) Calculate interference Δ dha for a hollow shaft and inner ring with Formula (8.7).

$$\Delta dha = \frac{1 - \left(\frac{dh}{di}\right)^2}{1 - \left(\frac{dh}{di}\right)^2} \Delta da$$

 Δdha : Calculated interference of hollow shaft (mm)

dh : Bore diameter of hollow shaft (mm). For solid shaft, dh=0

d : bearing bore diameter (mm)

∆da : Calculated interference of solid shaft and inner ring (mm)

(c) Expansion stress force from fits for hollow steel shaft is calculated using Formula (8.8).

$$\sigma_{i} = \frac{E}{2} \cdot \frac{\Delta de}{d} \cdot \frac{\left\{1 - \left(\frac{dh}{d}\right)^{2}\right\} \left\{1 + \left(\frac{d}{di}\right)^{2}\right\}}{\left\{1 - \left(\frac{dh}{di}\right)^{2}\right\}} \quad \bullet \bullet \bullet \bullet \bullet (8.8)$$

(7) Outer Ring to Housing Fits

Interference fit must be provided between the outer ring and housing where there is rotating outer ring load or indeterminate load. Fits for outer ring and steel housing can be obtained by using Table 8.6 and maximum stress of the outer ring can be calculated with Formula (8.9).

$$\sigma_{o} = \frac{E}{2} \cdot \frac{\Delta De}{D} \cdot \frac{1 - \left(\frac{D}{Dh}\right)^{2}}{1 - \left(\frac{De}{Dh}\right)^{2}}$$
 (8.9)

σο : Maximum outer ring bore surface stress (MPa) E : Vertical elastic coefficient for steel: 2.07×10^5 (MPa) Δ De : Effective interference (mm)

D : Bearing outside diameter (mm)

Dh : Housing outside diameter (mm)

(Note): If the housing is rigid body;

 $Dh = \infty$

De = Mean bore diameter of outer ring

(mm)

Cylindrical roller bearings and Self-aligning ball bearings of series 22 and 23:

De $\stackrel{.}{=} 0.25(3D+d)$

All other bearings:

De $\stackrel{.}{=} 0.1(7D+3d)$

8.1.4 Selection of Bearing Clearance

The internal clearance of rolling contact bearings during operation (the operating clearance) is a factor which can affect bearing life, vibration, heat, sound, etc.

Theoretically, bearing life is maximum if bearings operate with a slight preload (a slight negative operating clearance). If a bearing is to operate with a slight preload, great care must be taken in the analysis and design of the application to be sure that preloads do not begin to rise during the bearing operation to a level which will lead to an upward spiraling of heat=greater preload=more heat=early bearing failure. And also a bearing with an excessive operating clearance will not perform its maximum load capability.

To prevent clearance problems, unmounted bearing clearance should be selected so that operating clearance will be slightly positive. (Note that bearings chosen for precision location functions are preloaded, but the amount of preload must be precisely controlled at assembly).

For non-separable, radial bearings, and for radial Cylindrical roller bearings, which are assembled in clearance groups with a set amount of "unmounted" internal clearance; the initial internal clearance will be the unmounted clearance minus clearance losses from mounting fits.

Typical clearance groups for the above types of bearings are:

C2: less than Normal clearance

CN: Normal clearance

C3: more than Normal clearance

CN (Normal) internal clearance is determined so that appropriate clearance will remain after the bearing is mounted to the shaft with an interference fit, but with no fit (no interference) between the outer ring and housing and the temperature difference between inner and outer ring is 10 °C or less.

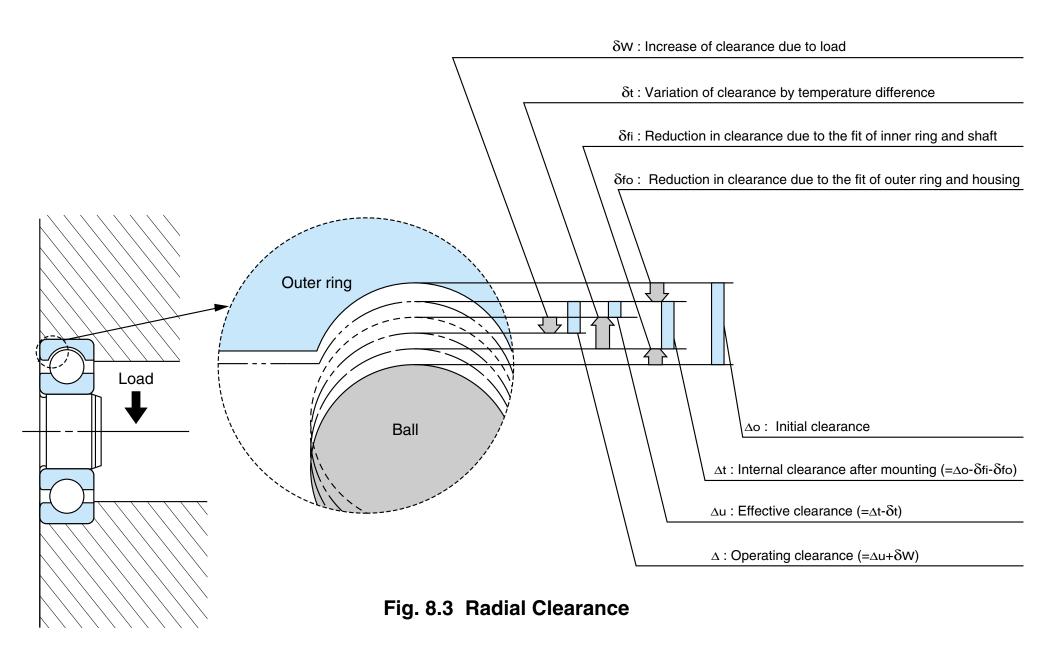
Table 8.15 indicates examples of selection for clearance groups other than CN (Normal) internal clearance.

Bearing clearance varies during operation with respect to the temperature rise and the type and magnitude of load. For example, if large reduction of clearance is expected, more initial clearance is required.

Fig. 8.3 illustrates radial clearance of a single-row Deep-groove ball bearing.

Table 8.15 Examples of Selection of Clearance Other Than CN (Normal) Clearance

Fig. 8.3 Radial Clearance



NACHI

Table 8.15 Examples of Selection of Clearance Other Than CN (Normal) Clearance

Service Conditions	Clearance	Application Examples (reference)
Large interference for heavy or impact load		Railroad car axle
Interference in required for both inner and outer rings due to indeterminate heavy impact load		Traction motor
Inner ring is exposed to high temperature. Outer ring exposed to low temperature.	C3 clearance or larger	Pulp and paper machine dryer For outdoor use in cold area
When shaft has a large deflection. For increasing axial load capacity by increasing contact angle.		Semi-floating axle of automobile Bearing of rail road car axle for carring axial load. Thrust bearing of axles of rolling stock
When both inner and outer rings are clearance-fitted.	CO algorance or amallar	Roll neck of rolling machine
For controlling vibration and sound.	C2 clearance or smaller	Small, special electric motors
For post-assembly adjustment of clearance such as controlling deviation of shaft, etc.	C9na , C1na	Cylindrical roller bearing for lathe main shaft

(1) Operating Clearance

Operating clearance is defined as the clearance of a bearing operating in a machine at the operating temperature and load.

$$\Delta = \Delta o - (\delta t + \delta f) + \delta w$$
 ••••• (8.10)

where:

Δ : Operating clearance (mm)Δο : Unmounted bearing clearance

δt : Variation of clearance from temperature difference between inner and outer rings (mm)

δf : Reduction in clearance due to the fit of inner and outer rings (mm)

 δw : Increase of clearance due to load (mm)

(2) Internal clearance reduction due to temperature difference between inner and outer rings

Under normal operating conditions, the temperature of the rolling contact bearing components is, in ascending order from the lowest to the highest; the outer ring, the inner ring, and the rolling elements.

Since it is extremely difficult to measure the temperature of the rolling elements, operating temperature is calculated under the assumption that the temperature of the rolling element is equal to that of the inner ring. Therefore, the reduction in clearance due to temperature difference between the inner and outer rings can be obtained by the following formula:

$$\delta t = \alpha \cdot \Delta T \cdot Do$$
 ••••• (8.11)

where:

δt : Reduction in clearance due to temperature difference between inner and outer rings (mm)

α : Linear expansion coefficient of bearing steel: 1.12×10-5 (1/°C) for operating temperature 300°C or less

ΔT : Temperature difference between the inner and outer rings (°C)

Do : Outer ring raceway diameter (mm)

Do = 0.2(4D+d) for Deep-groove ball bearings and Spherical roller bearings.

Do = 0.25(3D+d) for Cylindrical roller bearings.

(3) Reduction in clearance due to fit

When a bearing is mounted to a shaft or housing with an interference fit, the inner ring will expand or the outer ring will contract (due to the fit), causing reduction in the bearing internal clearance. Reduction in clearance due to fit can be calculated from the following formula:

$$\delta f = \delta f i + \delta f o$$
 ••••• (8.12)

where:

 δf : Reduction in clearance due to fit (mm)

 δ fi : Reduction in clearance due to expansion of the inner ring (mm)

: Reduction in clearance due to the contraction of the outer ring (mm)

 $\delta fi = \Delta de \cdot \frac{d}{di} \cdot \frac{1 - \left(\frac{dh}{d}\right)^{-}}{1 - \left(\frac{dh}{di}\right)^{2}}$ •••••• (8.13) di : Bearing bore diameter of inner ring (mm) di : Mean outside diameter of hollow shaft (mm) (Note): For solid shaft, dh=0 (Note): For solid shaft, dh=0 Δde : Effective interference of the inner ring (mm)

 ΔDe : Effective interference of outer ring (mm)

: Bearing outside diameter (mm)

De: Mean inside diameter of outer ring (mm)

Dh: Housing outside diameter (mm)

Note: If the housing is a rigid body, $Dh=\infty$.

di ≒ 0.25(D+3d) for Cylindrical roller bearings and Self-aligning Ball bearings of bearing series 22 and 23

= 0.1(3D+7d) for other bearings

De = 0.25(3D+d) for Cylindrical roller bearings and Self-aligning Ball bearings of bearing series 22 and 23

De = 0.1(7D+3d) for other bearings

For estimating δf , the following may be used:

 $\delta fo = \Delta De \cdot \frac{De}{D} \cdot \frac{1 - \left(\frac{D}{Dh}\right)^2}{1 - \left(\frac{De}{Dh}\right)^2} \quad \bullet \bullet \bullet \bullet \bullet (8.14)$

 $\delta f=0.7 (\Delta de+\Delta De)$ to

0.9 ($\Delta de + \Delta De$),

with smaller values for heavy-section bearings (e.g. bearings of diameter series 4) and larger values for light-section bearing rings. (e.g. bearings of diameter series 9)

(4) Increase of clearance due to load

When a bearing is subjected to a load, elastic deformation will occur and this deformation will cause an increase in internal clearance. Table 8.16 outlines elastic deformation δr and δa .

Table 8.16 Load and Elastic Deformation

Table 8.16 Load and Elastic Deformation

Bearing type	Approximation of deformation from radial load δr (mm)	Approximation of deformation from axial load δa (mm)
Self-aligning Ball bearings	$\delta r = \frac{0.00070}{\cos \alpha} \sqrt[3]{\frac{Po^2}{Dw}}$	$\delta a = \frac{0.00070}{\sin \alpha} \sqrt[3]{\frac{P^2}{Dw}}$
Deep groove ball bearings Angular Contact ball bearings	$\delta r = \frac{0.00044}{\cos \alpha} \sqrt[3]{\frac{Po^2}{Dw}}$	$\delta a = \frac{0.00044}{\sin \alpha} \sqrt[3]{\frac{P^2}{Dw}}$
Spherical roller bearings	$\delta r = \frac{0.00018}{\cos \alpha} \sqrt[4]{\frac{Po^3}{Lwe^2}}$	$\delta a = \frac{0.00018}{\sin \alpha} \sqrt[4]{\frac{P^3}{Lwe^2}}$
Cylindrical roller bearings Tapered roller bearings	$\delta r = \frac{0.000077}{\cos \alpha} \cdot \frac{Po^{0.9}}{Lwe^{0.8}}$	$\delta a = \frac{0.000077}{\sin \alpha} \cdot \frac{P^{0.9}}{Lwe^{0.8}}$
Thrust ball bearings	_	$\delta a = \frac{0.00052}{\sin \alpha} \sqrt[3]{\frac{P^2}{Dw}}$
Po and P	$Po = \frac{5Fr}{iz \cos \alpha}$	$P = \frac{Fa}{z \sin \alpha}$

where: Fr = Radial load (N)

Fa = Axial load (N)

 α = Contact angle (°)

Dw = Diameter of ball or roller (mm)

Lwe = Effective roller length (mm)

i = Number of row of ball or roller

z = Number of ball or roller per row

8.2 Preload and Rigidity

Generally, rolling contact bearings are mounted so that in operation, there will be a small amount of internal clearance. Applications may sometimes require that the bearings be provided with appropriate negative clearance called "preload" when assembled. Preload has various purposes and effects. Since an incorrect amount of preload may adversely affect the rolling resistance, life, temperature rise, sound, etc. of bearings; extreme care must be taken when applying preload.

8.2.1 Purposes of Preload

- (1) Increases rigidity of a shaft (that is, preloading can help to decrease the deflection of shafting).
- (2) Enhances rotating accuracy of shaft. Minimizes axial movements and helps to prevent vibration and decrease noise.
- (3) Prevents fretting caused by external vibration.

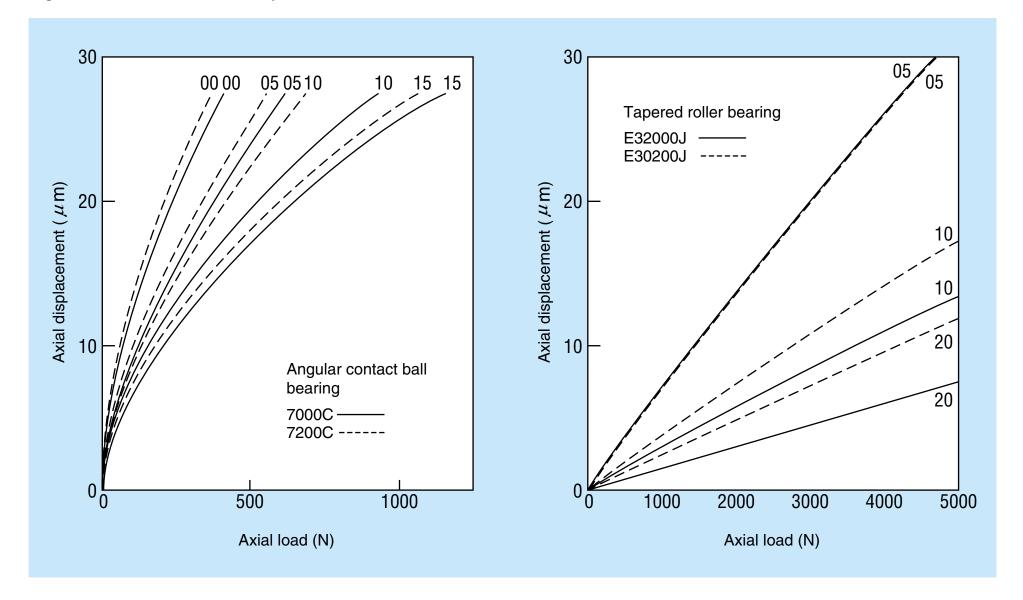
Item 1 and 2 are pertinent with respect to proper gear engagement, rotating accuracy of precision machinery and resonance of electric motor rotors.

8.2.2 Preloading Method and Measurement

(1) Preloading method

Preloading can be accomplished using one or more of the following methods:

- a) Use of springs (disc and coil springs) "Constant-pressure" preloading.
- b) Use of clamping nut "Fixed-position" preloading.
- c) Use of spacer (spacer and shim) "Fixed-position" preloading.


(2) Measurement of preloading amount

- a) Measuring method using axial load.
 - If preloading is done using springs, the preloading amount is determined by the amount of spring displacement.
 - If preloading is done using a clamping nut, the preload amount is determined by the relationship of the fastening torque of the nut and clamping force.
- b) Measuring method using the bearing axial displacement (<u>Fig. 8.4</u>).
 - Preload amount is determined by relationship of axial load on the bearing and resulting axial displacement.
- c) Measuring method using start-up friction torque of the bearing. Relationship between axial load and friction torque should be known for this method.

Fig 8.4 Axial Load and Axial Displacement

Fig 8.4 Axial Load and Axial Displacement

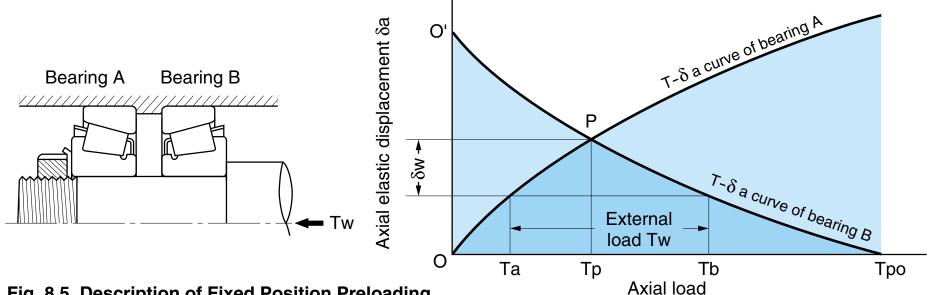
8.2.3 Effect of Preloading

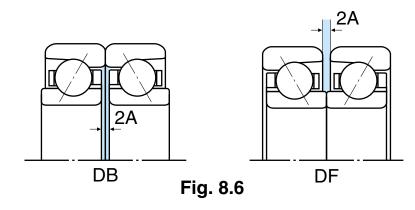
To illustrate the effects of preloading on a duplex Tapered roller bearing set, apply the formula from Table 8.16 to calculate a set of curves for bearing A and bearing B. The example bearing set (see Fig. 8.5) is preloaded (fixed-position), and external load, Tw, is applied.

Load distribution to the two units of bearing in terms of the axial displacement will be calculated using the graphical solution procedures described as follows:

- (1) Draw T- δa curve of bearing A.
- (2) Take preload Tp on axis T, determine intersection P with the curve of bearing A, and draw T-δa curve of bearing B through point P.
- (3) Connect the two curves with a length equivalent to the value of external load Tw.
- (4) Load Ta and Tb equivalent to this point will become the load of the individual bearings under external load Tw.
- (5) Disposition of bearing is obtained by the disposition δw of bearing B.

The disposition of bearing B will be obtained by subtracting disposition to Tp from the counterpart to Tb. The reason for this is that if the bearings are preloaded, the disposition of both bearings becomes constant within a range where preload is not offset to zero by an external load (O - O' in Fig. 8.5 is constant). In other words, bearing A becomes loosened by the amount displaced by the external load on bearing B. If the external load increases and preload is eliminated, load Tb on bearing B will be equal to the external load Tw and the load on bearing A becomes zero. Magnitude of the external load causing loss of preload is represented by Tpo in Fig. 8.5.




Fig. 8.5 Description of Fixed Position Preloading

8.2.4 Duplex Bearing Preload, Clearance

The preload of duplex bearings can be defined as the clearance, 2A as shown in Fig. 8.6.

If preloading is an application necessity, it is very important that a very thorough application analysis is made, since, if an excessive amount of preload is applied, there can be abnormal heating, increase in rotating torque and / or a sharp drop in bearing life. <u>Table 8.17</u> shows standard preload and <u>Table 8.18</u> outlines target amount of fits for precision (tolerance class 5 or 4), Angular Contact ball bearings.

<u>Table 8.17 Standard Preload Amounts for Precision (tolerance class 5 or 4) Angular Contact Ball Bearings</u>

<u>Table 8.18 Target Interference Values for Precision (tolerance class 5 or 4) Angular Contact Ball Bearings</u>

Table 8.17 Standard Preload Amounts for Precision (tolerance class 5 or 4) Angular Contact Ball Bearings

Unit: N

Preload (N)		7000C (DB , DF)			7200C ((DB , DF)			7300C	(DB , DF)	
Bore diameter number	E	L	М	Н	Е	L	М	Н	E	L	М	Н
00	20	50	100	145	30	70	145	195	50	100	195	295
01	20	50	100	145	30	70	145	195	50	100	195	295
02	20	50	100	145	30	70	145	195	50	100	195	295
03	20	50	100	145	30	70	145	195	50	100	195	295
04	50	100	195	295	70	145	295	490	100	195	390	590
05	50	100	195	295	70	145	295	490	100	195	390	590
06	50	100	195	390	70	145	295	590	100	195	390	685
07	70	145	295	390	100	195	490	590	145	295	590	685
08	70	145	295	590	100	195	490	785	145	295	590	980
09	70	145	295	590	100	195	490	785	145	295	590	980
10	70	145	295	590	100	195	490	785	145	295	590	980
11	100	195	390	785	145	295	590	980	195	390	785	1470
12	100	195	390	785	145	295	590	980	195	390	785	1470
13	100	195	390	785	145	295	590	980	195	390	785	1470
14	145	295	590	1170	195	390	785	1470	295	590	980	1960
15	145	295	590	1170	195	390	785	1470	295	590	980	1960
16	145	295	590	1170	195	390	785	1470	295	590	980	1960
17	195	390	785	1470	295	490	980	1960	390	785	1470	2940
18	195	390	785	1470	295	490	980	1960	390	785	1470	2940
19	195	390	785	1470	295	490	980	1960	390	785	1470	2940
20	195	390	785	1470	295	490	980	1960	390	785	1470	2940

Table 8.18 Target Interference Values for Precision (tolerance class 5 or 4) Angular Contact Ball Bearings

	•	,		``	-
diameter	ng bore Nominal nm)	Shaft to inner ring	diameter	outside Nominal nm)	Housing to outer ring
Over	Incl.	Interference	Over	Incl.	Clearance
_ 18 30	18 30 50	0 ~ 2 0 ~ 3 0 ~ 3	_ 18 30	18 30 50	2 ~ 6 2 ~ 6
50 80 120	80 120 150	0 ~ 4 0 ~ 4 -	50 80 120	80 120 150	3 ~ 9 3 ~ 9 4 ~ 12
150 180	180 250	- -	150 180	180 250	4 ~ 12 5 ~ 15

Remarks: Regarding the fit of housing and outer ring, take the samller values of target clearance for the clamping side bearing and the larger values for the floating side.

Unit: μ m

8.2.5 Thrust Bearing Minimum Axial Loads

When rotated at relatively high speeds, the contact angle between rolling elements and raceways of a thrust bearing changes due to centrifugal force. This can cause a skidding (sliding) action between the rolling elements and the raceways. This skidding action may cause smearing and scuffing on the rolling elements and raceway surfaces.

To prevent sliding action, thrust bearings must always be loaded with a minimum axial load. The minimum axial load is derived form Formulas (8.15), (8.16) and (8.17).

Thrust bearings can sustain axial load in only one direction. When a bi-directional axial load exists, preload must be provided by either using double bearings or springs (or load washers) to maintain the minimum axial load.

For vertical shafts, the axial load due to dead weight of the shaft (etc.), will often exceed the minimum axial load. Even in such cases, reversing axial loads may occur during operation causing the initial axial load to fall below the minimum load.

(1) Thrust ball bearing (adopt larger of values below)

Fa min =
$$K \cdot n^2$$
 ••••• (8.15)

$$Fa \min = \frac{Coa}{1000} \quad \bullet \bullet \bullet \bullet \bullet \bullet \quad (8.16)$$

where:

Fa min : Minimum axial load (N)

K : Minimum axial load factor

n : Rotating speed (rpm)

Coa : Basic static load rating (N)

(2) Spherical Roller Thrust Bearing

$$Fa \min = \frac{Coa}{1000} \quad \bullet \bullet \bullet \bullet \bullet (8.17)$$

Minimum axial factor K $(\times 10^{-6})$

Series Bore No.	511	512, 522	513, 523	514, 524
00 01 02	1.03 1.26 1.56	1.55 1.92 3.36		
03	1.84	4.09	-	-
04	3.42	7.33	-	-
05	7.19	13.1	20.4	43.8
06	9.36	17.2	33.1	81.4
07	11.2	32.8	58.3	128
08	20.4	49.7	97.2	221
09	24.6	57.9	138	316
10	29.3	66.8	211	440
11	44.6	133	326	656
12	64.7	160	375	956
13	72.0	179	428	1240
14	82.8	200	596	1580
15	94.3	222	808	1800
16	103	245	907	2230
17	116	359	1240	2740
18	187	528	1390	4320
20	363	850	1850	4790
22	423	1010	2740	8220

Series Bore No.	511	512, 522	513, 523	514, 524
24	488	1130	4130	9980
26	648	1940	5140	16100
28	782	2150	6330	16900
30	886	2490	7140	25800
32	997	2880	9960	30000
34	1420	3940	11100	40100
36	1540	4330	15800	46330
38	2340	6290	23100	-
40	2520	6880	29700	-
44	3000	8130	-	-
48	4900	15900	-	-
52	5580	18400	-	-
56	9800	20400	-	-
60	14600	38000	-	-
64	16400	41800	-	-
68	18300	45700	-	_
72	20300	75600	-	_

Minimum axial factor K $(\times 10^{-6})$

(2/2)

(- ,						
Series Bore No.	29	39	Series Bore No.	29	39	
00	1.55	-	14	99.5	556	
01	1.92	-	15	114	704	
02	2.64	-	16	152	927	
03	3.30	-	17	172	1210	
04	3.82		18	187	1580	
04 1/2	6.41		19	286	2010	
05	7.51	14.2	20	321	2090	
06	9.72	28.9	21	346	2390	
07	20.1	52.3	22	361	3220	
08	25.1	81.0	23	350	3940	
09	31.6	140	24	538	4500	
10	46.1	209	25	498	–	
11	54.4	284	26	–	_	
12	60.7	350	27	–	_	
13	86.0	426	28	794	_	

Series Bore No.	0 –	Series Bore No.	0 –
3	1.34	18	82.8
4	3.62	19	110
5	4.65	20	121
6	6.40	21	132
7	7.76	22	176
8	9.24	23	204
9	11.6	24	223
10	16.5	26	350
11	19.0	28	395
12	23.0	30	431
13	21.0	32	580
14	31.3	36	1100
15	42.1	40	1730
16	46.9	44	2840
17	75.0	48	3690

8.3 Shaft and Housing Selection

Care must be taken in the design and manufacture of shafts and housings since inaccuracies in these components will probably result in poor bearing performance.

8.3.1 Accuracy and Surface Finish; Shafts and Housings

For general service conditions, the fit surfaces for shafts and housing bores for rolling contact bearings can be made using lathes or fine boring machines.

For applications requiring high-running accuracy, or for very quiet operation, or where high loads exist, a ground finish will be necessary.

<u>Table 8.19</u> indicates the shaft and housing accuracy and surface roughness for normal service condition.

Table 8. 19 Shaft and Housing Accuracy and Surface Roughness

 Table 8. 19 Shaft and Housing Accuracy and Surface Roughness

Item	Shaft	Housing Bore		
Roundness	≤0.5 times shaft diametral deviation	≤0.5 times housing bore diametral deviation		
Cylindricity	≤0.5 times shaft diametral deviation within range of bearing width	≤0.5 times housing bore diametral deviation within range of bearing width		
Shoulder Squareness	≤0.0003 (small bearing) ≤0.0004 (medium bearing) ≤0.0005 (large bearing)			
Fit Surface Rounghness	Ra<0.8 μ m (small & medium bearing) Ra<1.6 μ m (large bearing)	Ra<0.8 μ m (small & medium bearing) Ra<3.2 μ m (large bearing)		

8.3.2 Shaft and Housing Design; Recommendations

- Design shafts as short as possible and of sufficient diameter to prevent bending. Design the housing and supports for appropriate rigidity.
- Use care in specifying the roundness, cylindricity, and surface finish of shaft and housing fit surfaces. See <u>Table 8.19</u>.
- Use care in specifying the squareness of the shaft shoulder to the shaft center and squareness of the housing shoulder to the housing. See <u>Table 8.19</u>.
- Make sure that the radius, ra, of the corner roundness is smaller than the bearing chamfer dimension, r, (minimum) or, r1 (minimum) to prevent the shaft or housing from interfering with proper bearing seating. See <u>Fig. 8.7</u>.

For radial bearings in general, determine the maximum value of radius ra of the corner roundness and the minimum value of the shoulder height according to <u>Table 8.20</u>.

When using a ground finish, provide and undercut as shown in Fig. 8.8. See Table 8.21 for undercut dimensions.

- When using a radius, (ra2) of corner roundness larger than the bearing chamfer dimension (for enhancing the strength of the shaft or when shoulder height must be lower than specified in the dimension tables), install a spacer between the bearing and the shaft shoulder as shown in Fig. 8.9 and Fig. 8.10.
- For ease of dismounting, make the height of the shaft shoulder smaller than the inner ring outside (or land) diameter. If a higher shoulder is required for applying heavy axial load, install an undercut in the shaft as shown in Fig. 8.11.
- Finish bearing mounting screws, or clamping nuts as right-angled to the shaft as possible and thread screws reverse to the rotating direction of the shaft.
- For split-type housings, carefully finish the matching faces of the split housing and install a relief on both sides of the bore diameter of the cap to prevent excessive force from being applied to the bearing when the housing cap is tightened.
- For light-alloy housings (having less rigidity), insert a steel bushing to provide additional rigidity. In general the interference fit is not enough to locate a bearing axially. In principle it is necessary to fix a bearing axially by same method.
- Generally, an interference fit is not adequate to axially locate a bearing. A shaft or housing backing shoulder should be used.
 - Fig. 8.8 Chamfer Dimension and Radius of Corner Roundness
 - Fig. 8.9 Chamfer Dimension and Radius of Corner Roundness when Using a Spacer
 - Fig. 8.10
 - Fig. 8.11
 - Table 8.20 Maximum Corner Radius and Minimum Shoulder Heights
 - Table 8.21 Undercut dimensions for Ground Shaft Finish

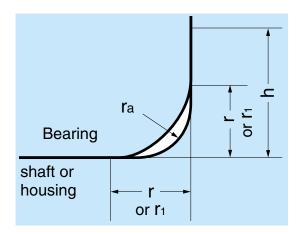


Fig. 8.7 Chamfer Dimension, Radius of Corner Roundness, and Shoulder Height

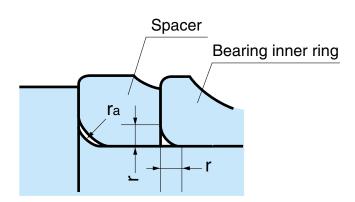


Fig. 8.9 Chamfer Dimension and Radius of Corner Roundness when Using a Spacer

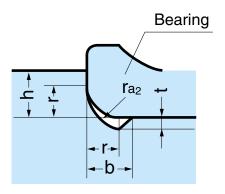
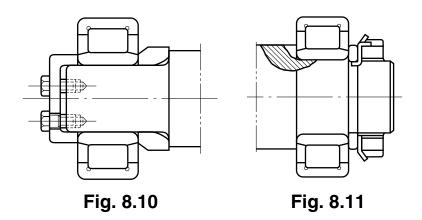



Fig. 8.8 Chamfer Dimension and Radius of Corner Roundness

Table 8.20 Maximum Corner Radius and Minimum Shoulder Heights

Unit: mm

Minimum tolerance		Shaft or housing	
chamfer dimension	Radius l'a (max)	Shoulder height h (min)	
r (min) or r ₁ (min)	of corner – roundness	General cases	Special cases (1)
0.1	0.1	0.4	0.4
0.15	0.15	0.6	0.6
0.2	0.2	0.8	0.8
0.3	0.3	1.25	1
0.6	0.6	2.25	2
1	1	2.75	2.5
1.1	1	3.5	3.25
1.5	1.5	4.25	4
2	2	5	4.5
2.1	2	6	5.5
2.5	2	6	5.5
3	2.5	7	6.5
4	3	9	8
5	4	11	10
6	5	14	12
7.5	6	18	16
9.5	8	22	20
12	10	27	-
15	12	32	-
19	15	-	-

Note (1) Data in the columns for special cases should be used when axial load is extremely small. The values Table 8. 21 do not apply to tapered roller bearings, spherical roller bearingsand angular contact ball bearings. Remarks: Symbols are based on Fig. 8.7.

Table 8.21 Undercut dimensions for Ground Shaft Finish

Unit: mm

Minimum tolerance chamfer dimension	Notch dimensions			
r (min) or r ₁ (min)	t	ra 2	b	
1	0.2	1.3	2	
1.1	0.3	1.5	2.4	
1.5	0.4	2	3.2	
2	0.5	2.5	4	
2.1	0.5	2.5	4	
2.5	0.5	2.5	4	
3	0.5	3	4.7	
4	0.5	4	5.9	
5	0.6	5	7.4	
6	0.6	6	8.6	
7.5	0.6	7	10	

Remarks: Symbols are based on Fig. 8. 8.

8.3.3 Examples of Shaft Designs

(1) Cylindrical-bore Bearing Shaft Design

- If axial load is applied away from the shaft shoulder, the inner ring can be locked into position using; a) nuts and washers (Fig. 8.12a); b) nuts and lock washers (Fig. 8.12b); or end plates and bolts (Fig. 8.12c). When using a lock washer WITHOUT a shaft keyway or slot, it is recommended that the direction of the nut thread be made reverse to that of the shaft rotation. Note: Careful analysis of bearing load, shaft fits, and finishes, and bearing clearance may show that the shaft fit may be more than adequate to support the axial loading on the bearing.
- When not supporting axial load on the shaft-end on the side opposite the shaft shoulder, you may elect to insert a snap ring in a shaft groove to prevent the inner ring from moving axially. To remove clearance between the snap ring and bearing ring, shims or spacers can be inserted. See Fig. 8.13.
- Snap rings can be applied when using spacers between gears, or pulleys instead of using a shaft shoulder. If axial load will act on the snap ring, insert a shim or spacer between the bearing ring and the snap ring to prevent the axial load from applying bending stress to the snap ring, and to eliminate any axial clearance from between the snap ring and the ring groove. See Fig. 8.13.

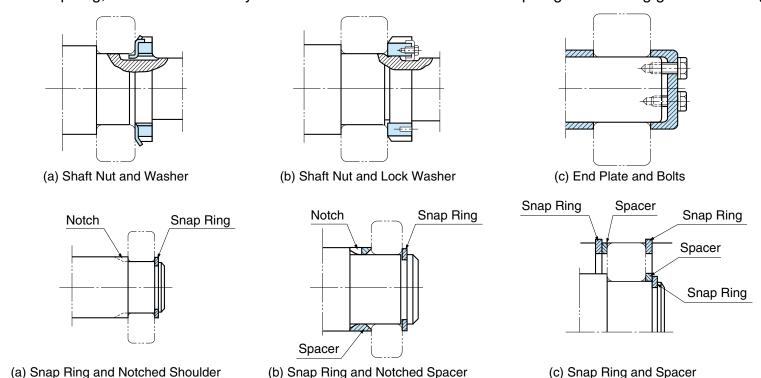


Fig. 8.12

Fig. 8.13

(2) Tapered-bore Bearing Shaft Designs

Two methods of mounting tapered-bore bearings to a shaft are; direct mounting to a tapered shaft, or mounting to a cylindrical shaft using adapter or withdrawal sleeves.

Use of adapter or withdrawal sleeves may allow use of less expensive shaft seats (no tapering cost), permits use of a larger shaft tolerance and allows variable location of a bearing on a shaft. See Figs. 8.14 to 8.16. Since the dimensional accuracy of sleeves is not as high as that of bearings, sleeves are not appropriate for applications requiring high accuracy or high rotational speed.

Normally, tapered-bore bearings used with adapters do not employ shaft shoulders.
 To prevent nuts from loosening, use washers for shafts of diameters 200 mm or less, and lock plates for shafts of diameters 200 mm or more.

Nut thread direction to be made reverse to direction of rotation.

• For shafts with shoulders, mount the tapered-bore bearing with withdrawal sleeves with nuts and washer or end plates and bolts. See Fig. 8.17.

Nut thread direction should be reverse to direction of rotation.

• When accuracy is of primary importance, use the direct mount method using tapered-bore bearings mounted directly to tapered shafts. See Fig. 8.18.

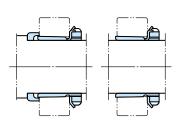


Fig. 8.14 Adapter Sleeve Mounting

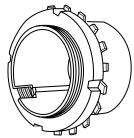


Fig. 8.15 Adapter Using Washer (Bearing Bore ≤ 200 mm)

Fig. 8.16 Adapter Using Lock plate (Bearing Bore > 200 mm)

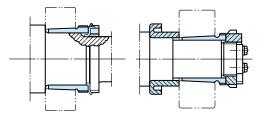


Fig. 8.17 Withdrawal Sleeve Mounting

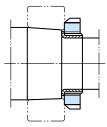


Fig. 8.18 Tapered Shaft Mounting
Using Split Ring, Nut and Washer

8.3.4 Housing Designs

- When mounting two bearings to a common shaft, it is necessary to design a structure that allows linear expansion of the shaft due to temperature rise, and for mounting interval errors made during assembly. To accomplish this, mount one of the bearings to support both radial and axial loads. Fix the inner and outer rings to the shaft and housing so that neither ring will move axially. Mount the other bearing so it can move axially as the "free" side bearing capable of supporting only radial load.
- If a bearing configuration is selected for the free side bearing which will not accommodate the linear movement of the shaft created by thermal expansion, select a housing fit which will permit axial movement of the outer ring in the housing.
- If a Cylindrical roller bearing with an N, NU, or RNU configuration is used for the free side bearing, then shaft expansion due to temperature rise can be relieved by axial movement of the inner ring of the bearing. See Fig. 8.19. Use of Cylindrical roller bearings may also facilitate assembly if an interference fit is required for both inner and outer rings (due to the load relationship).
- If Cylindrical roller bearings with an NF or NJ configuration are used at both ends of a shaft, axial clearance must be prevented from becoming too small. Referring to Fig. 8.20, make width B (inner ring spacer) larger than the distance A between the outer rings.
- If the amount of shaft expansion is small (due to small temperature rise or short shaft), and precise axial location is not needed then two units of non-separable configuration bearings may be used with both units having floating axial movement. In such cases, assemble the two units with axial clearance on both ends of the assembly. See Fig. 8.21. For mounting of two Deep-groove ball bearing pillow blocks with spherical outer ring bearing surfaces, lock and bolt the first pillow block into position, then lock the second block to the shaft. Pull the second block away from the first block while tightening the mounting bolts. Where axial expansion can not be handled by the clearance within the bearings, please consult NACHI.

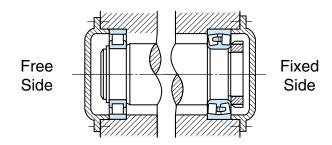


Fig. 8.19 N-Configuration Cylindrical Roller Bearing as Free Bearing

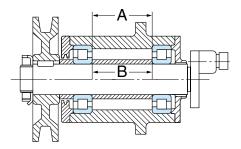
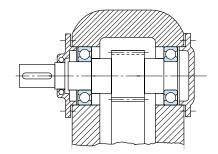
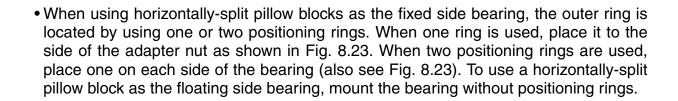


Fig. 8.20




Fig. 8.21

• Pairs of single-row Angular Contact ball, or Tapered roller bearings are often used for axial positioning. When bearing spacing is large, axial expansion from temperature rise is best handled using an assembly as shown in Fig. 8.22, where the paired bearings take axial and radial loads and another bearing (in the Figure, an NU-configured Cylindrical roller bearing), permits linear shaft expansion.

• Determine the position of the fixed bearing by considering the machinery application and the balance of rated life of the individual bearings. For example, when a bevel gear is used (see Fig. 8.24), set the bevel gear side as the fixed side to maintain the accuracy of the gear engagement. For electric motors, the fixed side bearing is often positioned on the non-driving side where a lower amount of radial load is applied, in order to equalize the bearing equivalent load and rated life between the two bearings.

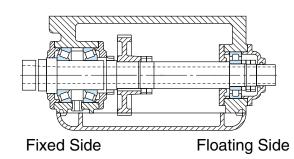


Fig. 8.22

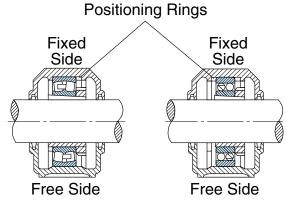
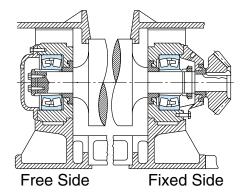



Fig. 8.23

8.4 Sealing Devices

8.4.1 Sealing Device Requirements

- Must effectively stop foreign material intrusion.
- Must not create excessive frictional loss or heat.
- Must be easy to mount, dismount, and maintain.
- Must be inexpensive.

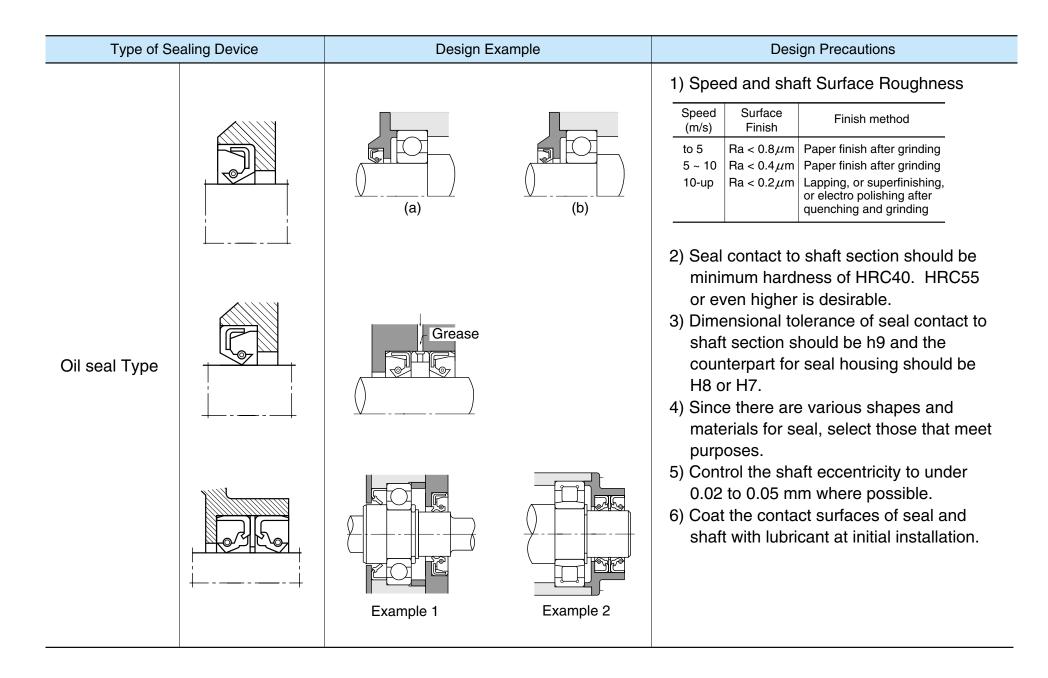
The lubrication method and sealing devices used must be compatible and appropriate for the application. Integrally-sealed or shielded bearings may need separate, additional sealing devices if they are to be operated in an adverse

atmosphere.

- Linear gap (simple gap type)
- Coaxial groove (oil groove type)
- Threaded groove
- Slinger type
- Slinger type (for oil lubrication)
- Radial labyrinth type
- Axial labyrinth type
- Self-aligning type labyrinth
- Seal ring type (felt, leather, rubber, plastic)

Back

- Adjustable Seal type (includes metal packing O-ring, etc)
- Oil seal Type



Type of Sealing Device		Design Example	Design Pred	cautions		
Linear gap (simple gap			1) Clearance between a housing	Clearance between shaft and bearing housing		
type)	-		Shaft dia. (mm)	Radial clearance (mm)		
		<u> </u>	50 or less	0.25 ~ 0.4		
			50 Over 200 Incl.	0.5 ~ 1.5		
Coaxial groove (oil groove type)	+	(a) (b)	 2) Groove dimensions Width: 3 to 5 mm Depth: 4 to 5 mm 3) Where possible, promore. 4) Fill grooves with greated out foreign material. 5) The threaded groove oil Jubricated, applicated. 	ase to aid in sealing		
Threaded groove	+ - + + + +		oil lubricated, applications where the shaft is horizontal and operates in a constant rotational direction. Thread grooves must be reverse to the rotation direction. 6) Oil grooves are used alone only where preventional oil relatively clean. Oil grooves are for preventing oil leaks and are generally used in combination with other sealing devices.			

Type of Sealing Device		Design Example	Design Precautions
Slinger type		(a) (b) (d)	 Seal types that sling oil, prevent oil leakage and dust entry through the centrifugal force generated by a rotor attached to the shaft. (a) and (b) are good for preventing oil leakage. (c) and (d) are good for preventing dust and water intrusion.
Slinger type (for oil lubrication)	+	A type of slinger	Oil deposited in the grooves returns to the housing.

Type of Sealing Device		Design Example	Design Precautions		
Radial			1) Labyrinth Clearance		
			Shaft dia. (mm)	Clearance (mm)	
				Radial	Axial
labyrinth type			50 or less	0.25 ~ 0.4	1 ~ 2
	++		50 Over 200 Incl.	0.5 ~ 1.5	2 ~ 5
Axial labyrinth type			 2) Radial and axial labyrinth seals. The rad groove type requires a split housing. 3) These seals are very suitable for the prevention of oil leakage of high speed shafts. 4) For low speed rotation, apply grease to the grooves for better sealing. 5) If angular misalignment exists, use self-aligning type labyrinth. 		ing. the speed
Self-aligning type labyrinth					

Type of Sealing Device		Design Example	Design Precautions		
			Sealing Material Temperature Range	Sealing materia	Operating temperature range °C
Seal ring type (felt, leather, rubber, plastic)		(a) (b) (c)	and run-out. 3) Lubricate the sliding	Nitrile Acrylic Silicon Flourine Ethylene tetrafluor Felt	-25 ~ 100 -15 ~ 130 -70 ~ 200 -30 ~ 200 ride -50 ~ 220 -40 ~ 120
				Seal Material —	Shaft diameter (mm)
				Nitrile 4 Acrylic 4 Silicon 4 Flourine 4 Ethylene tetrafluoride Felt when shafts have good	~ 12 12 ~ 18 18 ~ 25 ~ 18 18 ~ 25 25 ~ 32 ~ 18 18 ~ 25 25 ~ 32 15 3.5 ~ 4.5 d surface finish, roundness,
Adjustable Seal type (includes metal packing O-ring, etc)	+	5) Install one to three pieces of felt ring. 6) For high speed applications, use hard seal material. Coat with min oil before mounting and insert tightly. 7) Felt will harden and lose elasticity under high temperature or spee 8) Felt rings are good for relatively. clean, dust-free conditions. For application in excessively dusty conditions, synthetic rubber rings additional seal made of synthetic rubber should be used.		r high temperature or speed. dust-free conditions. For ons, synthetic rubber rings or	

8.5 Lubrication

8.5.1 Functions of Lubrication

The main purpose of lubricants in rolling contact bearings is to reduce friction and wear of each element. Lubricants perform this function by separating rolling and sliding surfaces with a very thin film of oil. Bearing performance and service life is largely dependent on the suitability of the lubricating system and lubricant to the application. Functions of lubrication in rolling contact bearings are:

- ① Lubrication of friction surfaces:
 - Reduction in;
 - 1) Rolling friction between the rolling elements and raceways.
 - 2) Sliding friction between roller end and guide faces of roller bearings.
 - 3) Sliding friction between the rolling elements and retainer.
 - 4) Sliding friction between the retainer and raceway guide surface.
- 2 Removal of the heat from system produced by friction and external sources. An example of the heat removal function would be use of a circulating oil lubrication system for a high-speed application.
- ③ Dust-proofing and rust prevention:
 - 1) Prevention of foreign material from entering the bearing.
 - 2) Protection of bearing components from corrosion.
- 4 Relief of stress concentration:
 - 1) Uniform distribution of stress to the rolling contact surface.
 - 2) Relief of impact loads.

8.5.2 Lubrication Cautions

- ① Adequate lubricant film separation should be maintained between friction surfaces.
- $\stackrel{ extbf{(2)}}{ extbf{(2)}}$ Since the oil film required on contact surfaces is thermally feeble, adequate oil viscosity must be maintained.
- 3 Since lubricants tend to deteriorate with increase in temperature, bearing applications should be designed to keep the operating temperature as low as possible.
- $oldsymbol{\textcircled{4}}$ The lubricating system (method) must be suitable for the application and the lubricant must have appropriate properties.
- 5 The lubricant must be kept free from contamination.

8.5.3 Lubricating Methods

(1) Oil Lubrication

(1.1) Oil Bath Lubrication

- Oil bath lubrication is generally used for low-to-medium-speed operation.
- Excessive oil causes churning which can cause excessive temperature rise. Insufficient oil will probably lead to early bearing failure.
- Oil level gauges are recommended to check (and maintain) the proper oil level.
- Separation ribs may be installed at the bottom of the housing to reduce churning and or to dissipate heat. See Fig. 8.25.
- Static oil level should be at slightly below the center of the lowest rolling element of a bearing applied to a horizontal shaft. For vertical shafts, static oil level should cover 50% to 80% of the rolling element.
- When two or more bearings are used on a vertical shaft in the same housing, the lower bearing may create excessive temperature rise if an oil bath system is used (unless operated at very low speed). If excessive heat occurs, use a drip, splash, or circulating oil system.

(1.2) Splash Lubrication

- In splash lubrication, oil is splashed on the bearing by a rotating element (an impeller or "slinger") mounted on the shaft. The bearing is not immersed in the oil.
- In a gear box, the gears and bearings are often lubricated from a common oil reservoir with the gears serving as a slinger. Since oil viscosity for the gears may differ from that required for the bearings and the oil may contain particles worn from the gears, a separate lubrication system or method may provide improved bearing life. Sealed or shielded bearings and "magnetic" plugs are often used in conjunction with gear drives.
- A bearing on a vertical shaft can be provided with a conical rotary element under the bearing so that the oil rises on the conical surface and is atomized before entering the bearing. See Fig. 8.26.

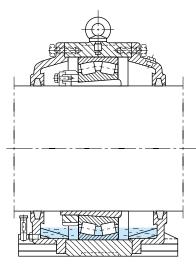


Fig. 8.25

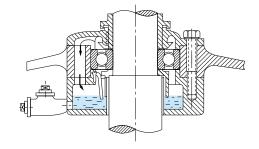


Fig. 8.26

(1.3) Drip Lubrication

- Drip lubrication is used for bearings operated at relatively high speeds under low-to-medium loads.
- Drip lubrication is generally used for the radial bearing on a vertical or inclined shaft and oil is fed directly to the bearing.
- The lubricating oil is contained in a lubricator, and is fed to the bearing through a wick which also serves as a filter. A sight window is provided to allow checking the oil level. Fig. 8.27 shows a drip lubricating system provided with a lubricator on top of the housing. Oil is dripped onto the shaft nut in the bearing box, and is atomized before entering the bearing. Fig. 8.28 shows an oil metering system designed to feed several oil drops per minute to the bearing.

(1.4) Circulating Oil Lubrication

- Circulating oil lubrication is used for two purposes:
 - 1) To cool the bearing.
- 2) To automatically feed oil to a specific area from a central system.
- A circulating oil system consists of an oil pump, cooling device, filter and delivery piping. Circulating oil systems utilize the pumping action of the bearings and augment the cooling effects of slingers.
- Circulating oil lubrication includes: drip, forced, and spray-mist lubrication.
- In the circulating oil lubricating system, the bearing is provided with an oil inlet located on one side of the bearing, and an oil outlet on the other side of the bearing.
- The oil outlet should be larger than the oil inlet so that excess oil does not remain in the bearing housing.
- Fig. 8.29 shows a circulating system with an oil passage in the area of the housing which carries no load. This system is for steam-heated calender rolls in a paper mill. Cooled oil is circulated through the inner wall of the housing and passes through both bearings.

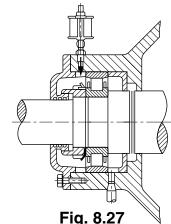


Fig. 8.27

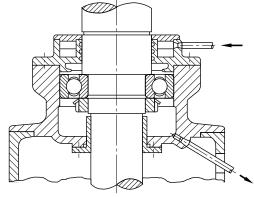
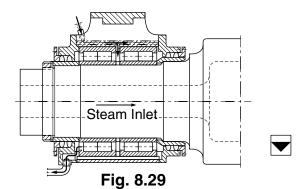



Fig. 8.28

(1.5) Forced Lubrication

Forced lubrication is used to feed oil under pressure to overcome internal housing pressure in high-speed operation.

- The oil outlet should have a cross section twice that of the oil inlet.
- A "jet" lube system is sometimes used in high-speed applications to target oil directly to the rolling and sliding components of the bearing. See Fig. 8.30. Excessive oil should be discharged with a pump.

(1.6) Disk Lubrication

Disk lubrication utilizes a disk on the shaft which rotates at high speed. The disk is partially submerged in oil, and splashes oil to an upper oil sump, which in turn delivers the oil to the bearing by gravity. Disk lubrication is used on the bearings of superchargers and blowers. See Fig. 8.31.

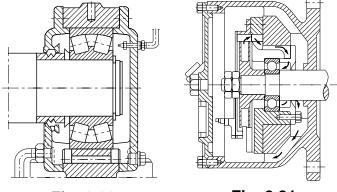


Fig. 8.30

Fig. 8.31

(1.7) Spray Mist Lubrication

- Fig. 8.32 shows an example of spray lubrication, which uses a turbo-compressor impeller to force oil into the bearing.
- Fig. 8.33 shows an example of oil mist applied to an oil atomizer (0.5 to 5.0 cc/h).

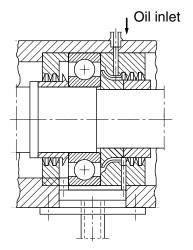
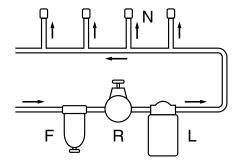



Fig. 8.32

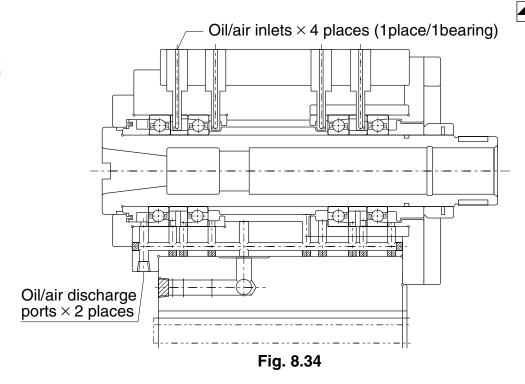
F: air filter R: pressure regulator

L: oil atomizer N: nozzle

Fig. 8.33

(1.8) Oil/Air Lubrication

Using the oil/air lubrication, a very small amount of oil is mixed with a certain amount of compressed air with a constant-quantity piston and mixing valve. This mixture is supplied to rolling part of bearings.


Because oil/air lubrication can remove heat generation from bearings, this method is suited for high speed application such as machine tool.

(2) Grease Lubrication

In using grease lubrication, the following items should be considered:

- Select grease having correct properties.
- Grease must be delivered in the right amount to the correct bearing area.
- Determine method of relubrication. Different greases should not be mixed because it can cause a poor lubrication performance.
- Consider centralized lubrication for large-size machinery such as rolling mill equipment. See Fig. 8.35.1.

Fig. 8.35.2 shows a design utilizing a grease supply plate. Symbols S, R, and Z refer to the nozzle, oil groove, and supply plate, respectively.

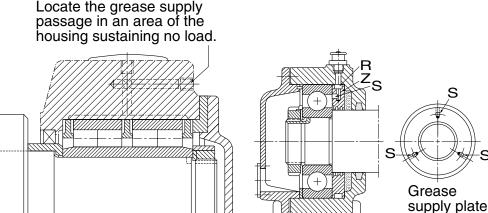


Fig. 8.35.1

Fig. 8.35.2

8.5.4 Lubricants

Rolling contact bearings use two forms of lubricants; lubricating oil and grease. In some special applications, solid lubricant such as molybdenum-disulfide, graphite, or PTFE are used. The lubricant should have the following properties:

- Low impurity and moisture content
- Temperature stability
- Non-corrosiveness
- Load pressure resistance
- Anti-wear action
- Anti-friction action
- High mechanical stability

See Table 8.22 for a guide to selection of lubricating oil and grease.

Table 8.22 Guide to selecting Oil and Grease

Operating Condition	Grease	Oil
Temperature	Available for range of -30° to +150°	Applicable for high temperatures (with circulating cooling)
Speed	Low to medium speeds	Applicable for high speed operation (depending on lube method)
Load	Low to medium loads	Suitable for high loads
Housing Design	Simple	Complicated by sealing requirements
Maintenance	Easy	Easy to difficult
Centralized Lubrication	Possible	Possible
Dust Filtration	Dependent on seal devices.	Possible (Circulating lubrication provides a filter to trap dust)
Rolling Resistance	Relatively high	Small (Correct oil quantity must be maintained)

A wide variety of lubricating oils and greases are commercially available for rolling contact bearings. It is important to select oils or greases with base oils having a viscosity which is appropriate for the operating condition.

Table 8.23.1 and 8.23.2 give generally recommended viscosities for bearings under normal operating conditions.

Table 8.23.1 Bearing types and Proper Viscosity of Lubricating Oils

Bearing Type	Viscosity at Operating Temperature
Deep Groove Ball Cylindrical Roller	Over 13 mm ² /s
Tapered Roller Spherical Roller	Over 20 mm ² /s
Spherical Roller thrust	Over 32 mm ² /s

Remarks: $1 \text{mm}^2/\text{s} = 1 \text{cSt}$ (centistokes)

Table 8.23.2 General Oil Selection Guide

(1) Lubricating Oil

Oils with a viscosity too low for the application may allow a partial loss of raceway to rolling element separation, leading to early bearing failure. Oils with too high a viscosity will cause an increase in torque, resulting in power loss and abnormal temperature rise. In general, as the load increases, increase the oil viscosity. As speed of rotation increases, decrease the oil viscosity. For Extra-small or Miniature ball bearings, low-viscosity lubricating oil will often be selected for low-torque requirements. Table 8.23.2, and Fig. 8.36 on following pages can be used to aid in selection of appropriate oil viscosity.

Fig 8.36 Viscosity-Temperture Line Diagram

Table 8.23.2 General Oil Selection Guide

Bearing Operating	do volvo	ISO Viscosity grade	ISO Viscosity grade (VG) of lubricating oil							
Temperature (°C)	dn value	Normal load	Heavy or impact load	Suitable bearing type(s)						
-30 ~ 0	Up to speed limit	22 32	46	All						
	Up to 15000	46 68	100	All						
0 00	15000 ~ 80000	32 46	68	All						
0 ~ 60	80000 ~ 150000	22 32	32	Except thrust ball bearing						
	150000 ~ 500000	10	22 32	Single row deep groove ball and cylindrical roller bearing						
	Up to 15000	150	220	All						
60 ~ 100	15000 ~ 80000	100	150	All						
60 ~ 100	80000 ~ 150000	68	100 150	Except thrust ball bearing						
	150000 ~ 500000	32 46	68	Single row deep groove ball and cylindrical roller bearing						
100 ~ 150	Up to speed limit	32	20	All						
0 ~ 60	Up to speed limit	46	68	Code evice I wellow be evice and						
60 ~ 100	Up to speed limit	1!	50	Spherical roller bearings						

Remarks: 1. This Table shows the guide for selecting oil, based on JIS K 2001 classification of Industrial Lubricating Oil Viscosity.

- 2. Generally as load increases or speed decreases, viscosity is increased.
- 3. This Table is applicable for oil bath lubrication and circulating oil lubrication.
- 4. For information on operating conditions beyond those of This Table, contact NACHI.

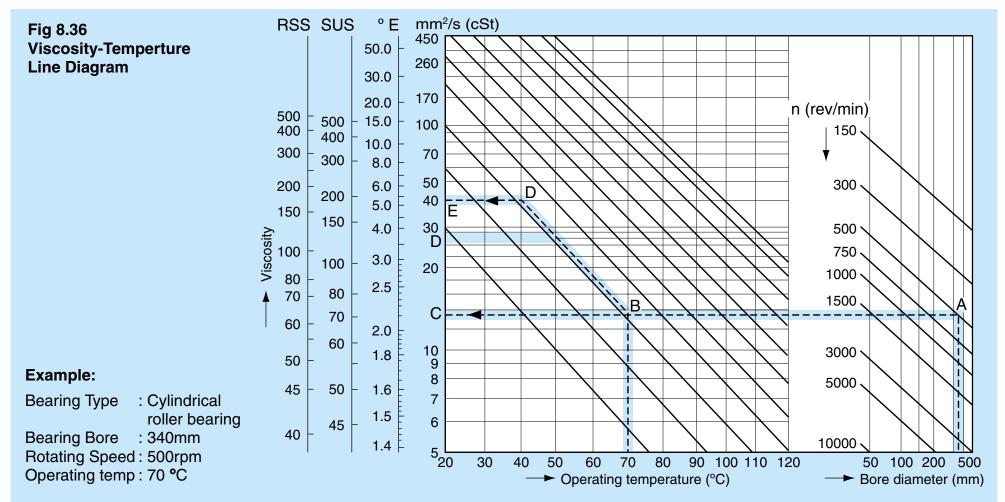


Fig. 8.36 can be used to select both the correct minimum viscosity at operating temperature and to establish the required oil viscosity rating (at 40°C) which will meet the specified minimum viscosity.

Find the intersection of 340 and 500 (see point A) and an horizontal line from point A to point C (intersection of Y-axis) To find the minimum viscosity required AT THE OPERATING temperature: read the minimum viscosity required (13mm²/s) at point C.

To establish the required oil viscosity rating;

- 1) At the intersection of A C and a vertical line from 70 (point B), draw a line toward the 40° -axis line parallel to the closest viscosity-temperature line.
- 2) Draw a horizontal line from the point (point D) of intersection of the above line with the 40° -axis to the Y-axis (see point E).
- 3) Read the viscosity 40mm²/s at point E. As a result, ISO viscosity grade VG46 should be selected.

(2) Lubricating Grease

Lubricating grease is composed of a base oil, a thickener, and additives.

Base Oil

Base oil refers to the liquid lubricant carried by a thickener. Mineral oils are widely used as the base oils for grease. Synthetic oils such as diester or silicone oil are also used for improving the heat resistance and stability of grease. In general, grease with a low-viscosity base oil is suitable for low temperatures and or low loads, while grease with a high viscosity base oil is suitable for high temperatures and or high loads.

Since lubricating performance is dependent on the thickener, additives, and viscosity, these components must be carefully selected to meet operating conditions.

Thickener

The thickener has a sponge-like structure composed of a loose combination of fine fibers or particles. Thickeners are roughly divided into metal soap, and non-soap types as shown below.

Sodium (Na) soap grease may react with water to form an emulsion, and should not be used for bearings operating in a high-moisture atmosphere.

Additives

An additive is an agent that provides extreme pressure and rust resistance, anti-oxidation performance, and other properties to grease. Various additives are added to grease to provide specific properties to the grease. Additives such as anti-oxidants, extreme pressure enhancers, and rust preventatives are often added to lubricating greases.

Anti-oxidant additives protect grease from oxidation and deterioration under thermal influence over a long period. Extreme pressure additives improve load resistance and impact resistance. Rust preventive additives protect the bearing and other surrounding components against rusting.

Penetration

Penetration is a measure which indicates the solidity of grease. A measurment device has a cone with a specified weight and shape. The cone is penetrated into the sample grease for a specified time. Penetration is the depth to which the cone penetrates (in units of 1/10 mm).

• Dropping Point

Dropping point is the temperature at which a grease sample drops through a specified hole size after being heated and fluidized.

Table 8. 24 Grease Number and Penetration

NLGI No.	ASTM Worked penetration	Grease is numbered differently by the grease
0	355 ~ 385	manufacturers. Numbers 250 and 300 of cup and
1	310 ~ 340	fiber grease generally
2	265 ~ 295	use penetration
3	220 ~ 250	(at 25°C), while most
4	175 ~ 205	versatile greases employ NLGI penetration
5	130 ~ 160	numbers such as 0, 1,
6	85 ~ 115	and 2.

(3) Lubrication Amount

① Oil

When oil bath lubrication is being used and a bearing is mounted with its axis horizontal, oil should be added until the static oil level is at the center of the lowest bearing rolling element. For vertical shafts, add oil to cover 50% to 80% of the rolling element.

2 Grease

The rolling bearing and bearing housing should be filled until the grease occupies about 33 to 50 % of the respective volumes. Temperatures will tend to rise as speed increases (due to churning). Higher-speed operation will be more sensitive to excess grease fill, so it follows that at higher dmn values, the grease-fill quantity must be reduced.

a) Amount of Initial Grease Fill

The amount of initial grease-fill required is calculated from the following equations:

Ball bearing:

$$Q = \frac{d^{2.5}}{900}$$
 ••••• (8.18)

where:

Q =Amount of filling grease (g) (specific gravity of grease=0.9) d =Bore diameter of bearing (mm)

Roller bearing:

$$Q = \frac{d^{2.5}}{350}$$
 ••••• (8.19)

b) Relubrication Amount Added at Service

$$Q = 0.005 \times D \cdot B \qquad \bullet \bullet \bullet \bullet \bullet \bullet (8.20)$$

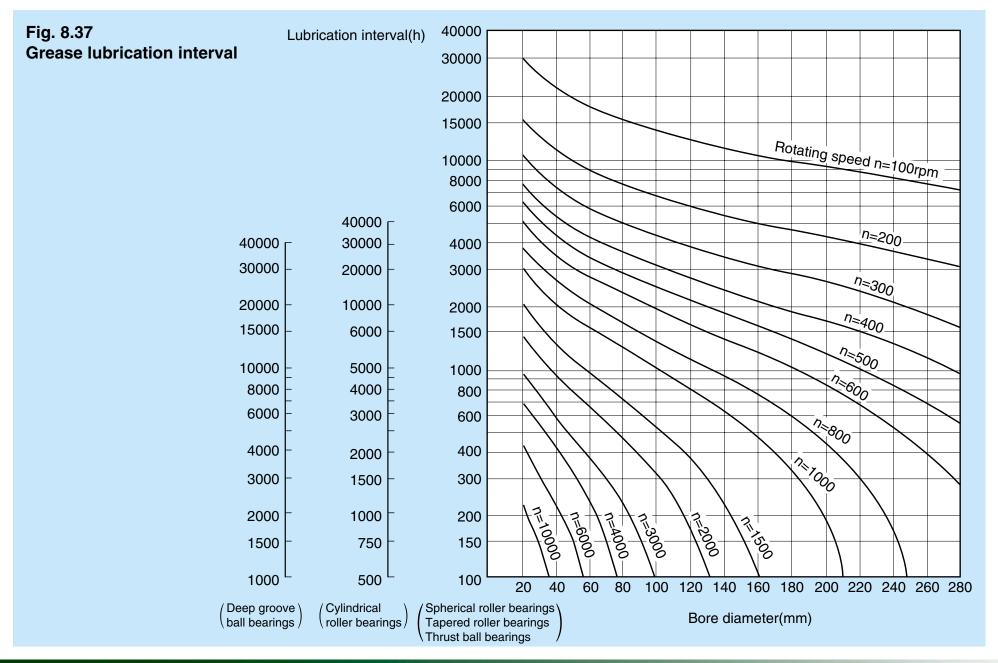
where:

Q =Amount of grease to add (g) (specific gravity of grease=0.9) D =Outside diameter of bearing (mm) B =Inner ring width (mm)

3 Lubrication Interval

For a typical bearing, which operates at about 50°C, lubricant should be replaced once a year. If operating temperature is 100°C or more, the lubricant should be replaced more than once every three months even if it has good heat stability. If oil bath lubricant becomes contaminated by water or foreign particles, it must be replaced immediately. The grease relubrication interval can be estimated from Fig 8.37.

Fig. 8.37 Grease lubrication interval


4 Grease Service Life

For applications where relubrication is not possible or practical, grease service life may be estimated using Formula (8.21). The following formula was derived using a grease with Lithium thickener and mineral oil base.

Table 8.25 Grease Properties

Table 8.25 Grease Properties

Popular Name	Cup Grease	Fiber Grease	Aluminum Grease	General -purpose Grease	Diester Grease	Silicone Grease	Mixed Base Grease	Complex Grease	Non-Soap E	Base Grease
Thickener	Ca Soap	Na Soap	Al Soap		Li Soap		Ca + Na Soap, etc.	Li Complex Soap, etc.		te, Urea c, etc.
Properties Base Oil	Mineral Oil	Mineral Oil	Mineral Oil	Dil Mineral Oil Diester Oil Silicone Oil N		Mineral Oil	Mineral Oil	Mineral Oil	Synthetic Oil	
Dropping Point (°C)	85	160 or Higher	85	170 o	r Higher	200 or Higher	150 or Higher	200 or Higher	250 or Higher	
Working Temperature (°C)	–20 ~ +70	-10 ~ +120	-10 ~ + 80	-30 ~ +120	-50 ~ +130	− 50 ~ +170	-30 ~ +120	-30 ~ +140	-10 ~ +130	-50 ~ + 200
Water Resistance	Good	Poor	Good	Good Poor for Na Soap Good		Go	Good			
Mechanical Stability	Fair	Good	Fair		Good		Good	Good	Good	
Remarks	Contains small amount of moisture for structure stability Not suitable for use at high temperature	Can not be used with water or moisture due to emulsification with water Used at relatively high temperature	Used in vibrating condition due to good tackiness	General purpose grease widely used small or medium size ball bearings	Suitable for low temperature operation	Wide working temperature range Mainly for light load conditions.	Used in large size bearings	Suitable for high temperature and heavy load conditions		e range on of nd base oil high

Note: 1. Greases with sodium (Na) soap thickener can not be used in applications there is a risk of water or high humidity because they became soft and flow out if they mix with water.

- 2. In case of mixing different brands of grease (not recommendable), please consult grease manufacturer to determine if there are any detrimental effects.
- 3. In case operating temperature are beyond what is shown in the table, please consult NACHI.

8.6 Speed Limit

- Bearings exceeding a certain operating speed will begin to create internal heat which may not be controllable.
- Speed limits vary with bearing types, dimensions, lubrication system, internal design of the bearing, and working loads. In addition, speed limits will vary according to the type of integral bearing seal which may be used (dependent on the speed of the seal contact area).
- The term "speed limit" refers to the estimated speed, in revolutions per minute, at which bearings will remain serviceable.

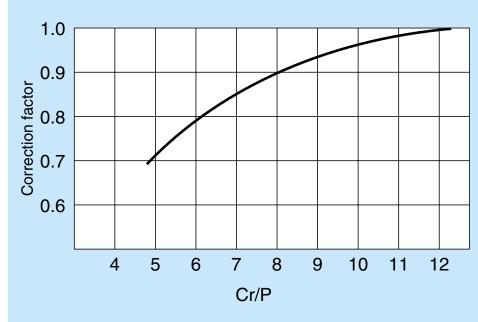
The dimension tables show speed limits for both grease and oil lubrication. Please note that the published speed limits are based on operation of properly lubricated, lightly-loaded bearings, installed on a horizontal shaft.

8.6.1 Speed Limit Correction for Load

As noted above, bearing speed limits will vary with respect to load. <u>Figs. 8.38.1</u> and <u>8.38.2</u> allow calculation of a speed limit correction factor which is applied to the speed limit tables.

- In <u>Fig. 8.38.1</u>, Cr is the basic dynamic load rating and P is the equivalent dynamic load. If Cr/P is < 13, then the table speed limit is multiplied by the correction factor from the curve shown in <u>Fig. 8.38.1</u>.
- In addition, if the ratio of the axial load (Fa) to the radial load (Fr) is larger than 0.3, that is, if Fa/Fr > 0.3, then the speed limit must be FURTHER multiplied by a correction factor as shown in Fig. 8.38.2
- Where the bearing is used at 75% or more of the speed limit, lubrication becomes a more sensitive operating consideration. If grease is to be used, then selection of the correct type and amount of grease is of paramount importance. If oil is used, then the correct selection of the feeding method and rate, and oil specification is of extreme importance.
- Please contact NACHI for help in cases where application rotating speed exceeds the corrected bearing speed limit.
- If the bearing is used in excess of the corrected speed limit, consideration must be given to the accuracy and clearance of the bearing; and to the material and shape of the retainer. Table 8.26 provides a guideline for maximum speed for bearings using special cages and internal design.

Fig. 8.38.1 Correction Factor for Bearing Load Fig. 8.38.2 Correction Factor for Fa/Fr


Table 8.26
Correction of Allowable Speed Limit in High-speed Operation

Bearing type	Correction Factor
Deep groove ball	2.5
Angular Contact ball	2
Cylindrical roller (single-row)	2.5
Tapered roller	2
Spherical roller	1.5

Fig. 8.38.1 Correction Factor for Bearing Load

Cr: Dynamic load rating (N)

P: Dynamic equivalent load (N)

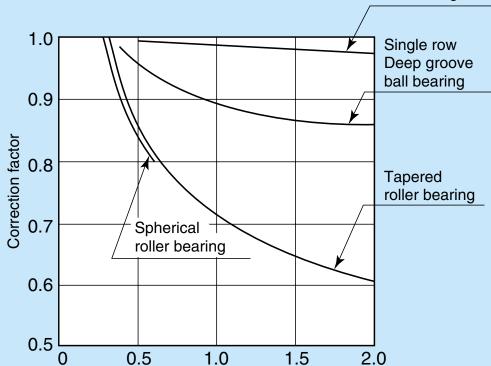


Fig. 8.38.2 Correction Factor for Fa/Fr

Fa: Axial load (N) Fr: Radial load (N)

Fa/Fr

Angular Contact ball bearing

8.7 Friction and Temperature Rise

8.7.1 Friction Torque

Friction torque in rolling bearings will vary with the bearing load and the condition of the lubricant.

Where the bearing load is light-to-normal (P≤0.12C) and the lubricant provides good separation between the rolling contact surfaces, bearing friction torque may be calculated using the following formula:

$$M = \mu \cdot F \cdot \frac{d}{2} \qquad \bullet \bullet \bullet \bullet \bullet \bullet (8.22)$$

The coefficient of friction for various bearing types is shown in Table 8.27.

where:

M = friction torque (N·mm)

 μ = coefficient of friction

F = bearing load (N)

d = shaft diameter (mm)

Table 8.27 Coefficient of Friction

Bearing type	Coefficient of friction (μ)	Load condition
Ball Bearings: Single row deep groove	0.0010 ~ 0.0015	Radial load
Single row angular contact	0.0012 ~ 0.0018	Radial load
Self-aligning	0.0008 ~ 0.0012	Radial load
Thrust	0.0010 ~ 0.0015	Axial load
Roller Bearings: Cylindrical	0.0008 ~ 0.0012	Radial load
Spherical	0.0020 ~ 0.0025	Radial load
Spherical thrust	0.0020 ~ 0.0025	Axial load
Tapered	0.0018 ~ 0.0025	Radial load

8.7.2 Temperature Rise

- Temperature rise in bearings is caused by the conversion of friction energy into heat.
- Bearing temperature will generally rise quite abruptly during the initial stage of operation and then gradually climb until a steady state is reached. The steady state condition will exist if temperature rise from frictional energy is removed by the cooling "heat-sink" effect from the shaft and housing, and from heat conductance via the shaft, housing and lubricant.
- The time until equilibrium is attained depends on the difference between heating volume generated by the bearing and the heating volume removed by the cooling effect.
- If the equilibrium temperature is excessively high, then review of the bearing application should be done. The bearing internal clearance or preload, fits, bearing support structure, seal contact area surface finish, rotating speed, load, and lubrication type, amount, and delivery system are subjects for investigation where excessive temperature occurs.
- An abnormal temperature rise can cause a spiraling condition where no equilibrium will occur, thus leading to a break-down in the lubricant and lubricant film, with catastrophic results.

8.8 Mounting and Dismounting

Rolling bearings have higher accuracy than other parts in most equipment and are often considered to be the most important rotating component. Improper handling of bearings reduces machine accuracy and can cause early bearing failures. To attain predicted bearing performance, utmost care should be taken in handling bearings from the point-of-receipt through the mounting operation.

8.8.1 Storage and Handling

The major problems encountered during the bearing storage and retrieval operations are in rusting and impact damage to the parts.

- To protect bearings against rusting during storage, parts should be placed in a dry, clean, cool area. Bearings should not be subjected to extremes of humidity during storage.
- Impacts to bearings can create damage to the raceways, rolling elements, and cages. Do not drop bearings. Bearings which are dropped should not be used for service.

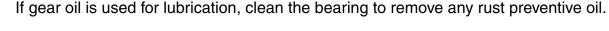
8.8.2 Mounting

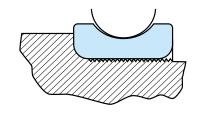
Proper bearing mounting governs the life, accuracy, and performance of a bearing. Before mounting the bearing, carefully check the following points.

Check to see if:

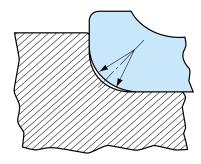
- the job standards are established and the necessary jigs are prepared.
- the shaft and housing size, tolerance, and finish are defined and met.
- lubricant type and amount specified is at hand.
- inspection standards are established.
- the method of cleaning the bearing and relevant parts is clear.

(1) Mounting Precautions

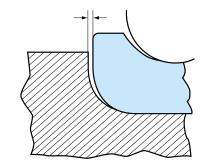

- Select a clean, dry place to handle the bearing, and keep necessary tools and workbench clean.
- Do not unpack the bearing until it is to be mounted.
- If the bearing is unpacked before mounting for acceptance inspection or for any other reason, follow these directions:
- a) If the bearing is to be mounted within a short time period, coat it with rust preventive oil and place it in a clean container.
- b) If the bearing will not be mounted in a short time, coat it with rust preventative oil and repack it in the original container.



- Check to see that the lubricant drums, cans, tubes, or applicators are clean and or closed. Check to be sure that the bearing housing is clean and free from flaws, impressions, burrs, or any other defects.
- For grease lubrication, you may fill the new bearing with grease without cleaning the bearing. If the bearing is small or is used for high-speed operation, whether it is lubricated with oil or grease, wash the bearing with clean kerosene or warm, light oil to remove the rust preventative. However bearings with seals or shields must not be washed and heated.



- Before mounting the bearing on the shaft, check to see that the shaft is finished to the specified size and accuracy.
- Check the shaft for surface finish. If the shaft fit surface has a poor surface finish (see Fig. 8.39), the surface may be smoothed during mounting, possibly resulting in bearing ring creep, shaft wear, and early bearing failure.
- Be sure that the shaft shoulders are finished at a right angle to the shaft axis, otherwise the bearing will be misaligned resulting in early bearing failure.
- Finish the corner radius of the shaft to the specified dimensions. Make sure the corner radius of the shaft is slightly smaller than that of the bearing as shown in Fig. 8.40. Never have the corner radius of the shaft larger than that of the bearing (see Fig. 8.41), otherwise, the bearing ring may be misaligned and early bearing failure will occur.
- Out-of-roundness of shaft
 Make sure that the shaft is accurate to out-of-roundness and cylindricity specifications. The inner
 ring of the bearing is an elastic body, having a relatively thin wall, so if the inner ring is fitted to a
 shaft having poor roundness, the inner ring raceway will be deformed accordingly.
- Contact surface of oil seals When using an oil seal, finish the seal contact surface to Ra < 0.8 μ m. If the finish is rougher than Ra < 0.8 μ m, the seal will gradually wear until it has no sealing effect. Also make sure that the contact surface is within the runout tolerance, otherwise oil leaks may occur since the seal lip may not stay in contact with the rotating shaft.



Surface finish Fig. 8.39

Corner radius of shaft (Good)

Fig. 8.40

Corner radius of shaft (Poor)

Fig. 8.41

(3) Bearing Housing

- Purposes of the bearing housing are:
- a) to maintain the bearing position for load support.
- b) to protect the bearing from the intrusion of foreign material.
- c) to provide a structure that will keep the bearing well lubricated.
- Verify that the housing bore diameter is to design specifications. If a loose fit class of H or looser is specified, check to make certain that the bearing will move freely in the bearing housing during installation. On horizontally-split bearing housings such as used on pillow blocks, do not mix the caps and bases during a reassembly procedure since these parts are mated during manufacture. In the latter case, mixing may cause either pinching or looseness of the bearing.
- Allowance must be made for linear expansion of the shaft due to temperature rise. When two or more bearings are mounted on a single shaft, comply with the following directions:
- Fix one bearing in the axial direction in the housing, and make sure that the other bearing(s) are free to move in an axial direction.

(4) Accessory Mounting Parts

Prior to bearing mounting, gather a set of the parts required for the mounting job. These accessory parts may include washers, adapters, withdrawal sleeves, spacer rings, slingers, oil seals, O-rings, shaft nuts, and snap rings for the shaft and or housing bore. Thoroughly clean these accessory parts and check them for appearance and size.

Other Precautions

- Be sure that the side of the shaft nut is at a right angle to the thread, otherwise, when tightened, the side of the shaft nut will make uneven contact with the side of the bearing causing early bearing failure. Use particular care when the bearing is used for high-accuracy applications such as lathes.
- Check the washer and spacer ring for parallelism of both sides.
- The oil seal and O-ring may create a temperature rise because the contact force is too great or because they are initially dry. Apply oil or grease to the contact surfaces to help prevent premature wear and reduce torque.

8.8.3 Bearing Mounting Considerations

When pressing a bearing into position, press against the ring with interference fit. Pressing through the rolling elements will cause damage, such as brinell marks or cracks to the elements and rings and the bearing will be unusable.

For inner ring rotating loads, the bearing is generally interference-fit to the shaft and either expansion fitting or press fitting can be used. expansion fitting may be the more appropriate method for mounting larger bore bearings.

A tapered-bore bearing can be mounted directly to a tapered shaft or with an adapter or withdrawal sleeve. When a withdrawal sleeve is used for larger bore bearings, the hydraulic mounting procedure will facilitate the process. Note that the use of hydraulic mounting of bearings to tapered journals is also very useful for larger bearing sizes.

For an outer ring rotating load, the bearing is usually interference-fitted with the housing. Either press fitting or shrink fitting may be used. In the case of the latter process, the bearing or bearing outer ring may be cooled to attain the fit.

(1) Mounting Cylindrical-bore Bearings

Press fitting

Many cylindrical-bore bearing applications use press fitting with the shaft. Use a jig which matches the inner ring as shown in Fig. 8.42. Press fit the inner ring using a press or jack.

To press fit the inner and outer rings simultaneously, use a jig as shown in Fig. 8.43.

Apply high-viscosity oil to the shaft and the contact faces of the bearing before press fitting.

Fig. 8.42 Press Fitting of Inner Ring

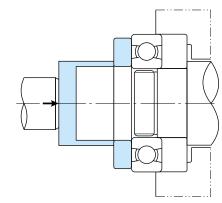


Fig. 8.43 Simultaneous Press Fitting of Inner Ring

Expansion Fitting

Expansion fitting is an appropriate procedure for mounting larger bore bearings. This fitting procedure can be completed quickly without applying undue stress to the ring being fit. The ring may be heated using a heating tank or an induction heater. Bearing rings must not be heated to a temperature exceeding 120 °C.

Fig. 8.44 provides the amount of heat rise required, vs. bore size, to expand inner rings to net 6 interference fit classes.

After mounting a heated bearing, secure it in the required position otherwise the bearing will tend to move axially as it cools.

Caution: When expansion fitting rings onto a shaft or into a housing, be sure that the procedure can be completed smoothly and quickly. If the ring should misalign or stop movement before it has reached the desired fit position, it may be very difficult to reposition the ring to the correct fit position.

As noted above, adapter or withdrawal sleeves are used for mounting tapered-bore bearings to cylindrical shafts. Tapered-bore bearings are also mounted directly to tapered shafts. While these methods are technically not press or expansion fitting procedures, the resulting shaft fits are similar to those obtained using the press fitting procedure, and, in certain cases, these methods are far more convenient.

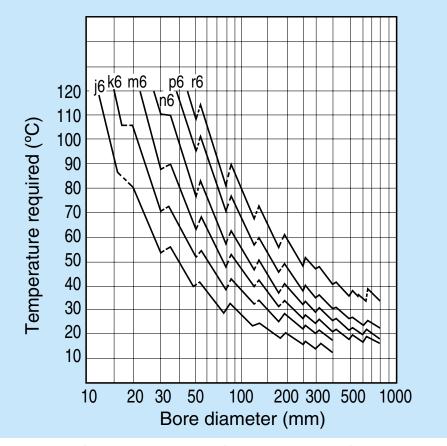


Fig. 8.44 Expension Heat Required

(2) Mounting Tapered-bore Bearings

Using a split-sleeve adapter permits the mounting of tapered-bore bearings in any axial position on shaft but care must be take to ensure that the bearing will be located at the correct position.

To mount a tapered-bore bearing using an adapter sleeve, first mount the bearing which is to be the stationary (fixed) bearing. Define and record the distance which the free bearing is expected to move in an axial direction in the housing.

Mount the free bearing so that the axial clearance provided for axial travel of the outer ring of the free bearing is on the outboard side (side farthest from the stationary bearing).

The required interference fit for tapered-bore, Spherical roller bearings can be attained using one of two methods:

 $[Continue {\rightarrow}]$

- a) by driving the bearing onto the sleeve by a predetermined distance; or,
- b) by measurement of residual bearing internal clearance as the sleeve is pushed into the bearing inner ring (see <u>Table 8.28</u>). Since exact measurement of the axial drive-up distance is extremely difficult, the residual method is usually the method of choice.

The residual method involves measuring the bearing unmounted internal clearance and then pulling up the adapter sleeve until the measured clearance (the residual) = the unmounted (original) clearance - the reduction amount required to attain the correct interference fit (see <u>Table 8.28</u> for the reduction amount). Clearance measurements are made using a thickness (feeler) gauge. (Note that the thickness gauge should be inserted over two or three unloaded rollers on each row of rollers and that the bearing bore must be in a horizontal position with respect to the shaft axis, with the outer ring centered over the rolling elements).

<u>Table 8.28</u> shows axial movement and radial clearance reduction for the mounting of Spherical roller bearings.

Heating of larger tapered-bore bearings may be used in conjunction with measurement of travel distance but be sure to check the results using the residual method (taking the unmounted clearance measurements and the final, residual clearance, when the bearing is cool). Also be sure that the bearing is not heated to over 120 °C.

When using a withdrawal sleeve for large-bore bearings, use of a hydraulic assist procedure is recommended. See Fig. 8.45 which shows use of a hydraulic nut.

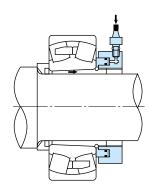


Fig. 8.45 Hydraulic Nut

Table 8.28 Tapered-bore Spherical Roller Bearings: Axial Movement and Radial Clearance Reduction

(3) Other Mounting Precautions

- For paired Tapered roller bearings, be sure to adjust the axial clearance to the specified value using shims where necessary.
- For bearing types with separable inner and outer members such as Cylindrical or Tapered roller bearings, mount the inner and outer ring separately and carefully assemble the shaft into the housing while making sure that no damage occurs to the inner or outer rings or rolling elements.

 Table 8.28 Tapered-bore Spherical Roller Bearings: Axial Movement
 and Radial Clearance Reduction

Nomina	al bore	Radial cl	earance	Axial movement (mm)							
diameter	d (mm)	reductio	n (mm)	Tape	r: 1/12	Tape	Taper: 1/30				
Over	Incl.	min	max	min	max	min	max				
30	40	0.020	0.025	0.35	0.4	-	-				
40	50	0.025	0.030	0.4	0.45	-	-				
50	65	0.030	0.040	0.45	0.6	-	-				
65	80	0.040	0.050	0.6	0.75	_	_				
80	100	0.045	0.060	0.7	0.9	1.75	2.25				
100	120	0.050	0.070	0.75	1.1	1.9	2.75				
120	140	0.065	0.090	1.1	1.4	2.75	3.5				
140	160	0.075	0.100	1.2	1.6	3.0	4.0				
160	180	0.080	0.110	1.3	1.7	3.25	4.25				
180	200	0.090	0.120	1.4	1.9	3.5	5.0				
200	225	0.100	0.140	1.6	2.2	4.0	5.5				
225	250	0.110	0.150	1.7	2.4	4.25	6.0				
250	280	0.120	0.170	1.9	2.7	4.75	6.75				
280	315	0.130	0.190	2.0	3.0	5.0	7.5				
315	355	0.150	0.210	2.4	3.3	6.0	8.25				
355	400	0.170	0.230	2.6	3.6	6.5	9.0				
400	450	0.200	0.260	3.1	4.0	7.75	10.0				
450	500	0.210	0.280	3.3	4.4	8.25	11.0				

8.8.4 Mounting and Dismounting Force

An approximate force necessary to install or remove an inner ring from a shaft may be calculated using the following equation.

Ka =
$$fk \cdot fe \cdot \Delta de$$

•••••• (8.23)

Where:

Ka = press fit or dismount force (KN)

 Δde = effective interference (mm)

 fk = factor from Table 8.29

 fe = from following equation

Table. 8.29 Value fk (Average)

Condition	fk
Inner ring pressed to cylindrical shaft*	39
Inner ring pulled from cylindrical shaft	59
Inner ring press fit to tapered shaft or sleeve*	54
Inner ring pulled from tapered shaft	44
Tapered sleeve press fit between shaft & bearing*	98
Tapered sleeve pulled from between shaft & bearing	108

^{*} Shaft and bearing bore thinly coated with oil.

$$fe = B \cdot \left[1 - \left(\frac{d}{di} \right)^2 \right] \quad \begin{array}{ll} \text{Where:} \\ \text{B} & = \text{inner ring width (mm)} \\ \text{d} & = \text{inner ring bore diameter (mm)} \\ \text{d} & = \text{mean inner ring outside diameter (mm)} \\ \text{d} & = 0.25 \text{ (D+3d)} \cdots \text{for Cylindrical roller bearings and Self-aligning Ball bearing series 22 and 23} \\ \text{d} & = 0.1 \text{ (3D+7d)} \cdots \text{for other bearings} \\ \text{where:} \\ \text{D} & = \text{Bearing outside diameter} \\ \end{array}$$

Fig. 8.46 ~ 8.49 show dismount and press fit force by diameter series.

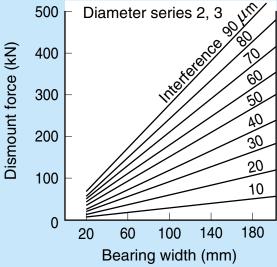
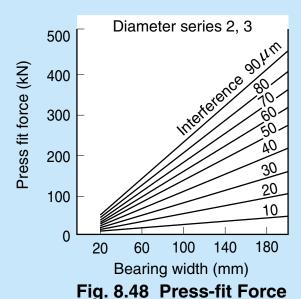



Fig. 8.46 Dismount Force

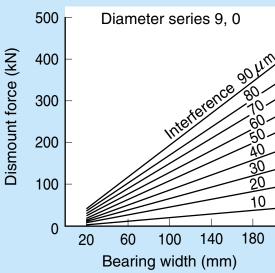


Fig. 8.47 Dismount Force

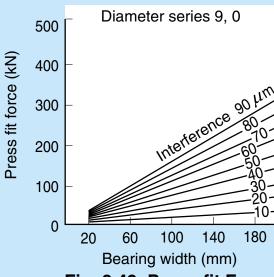


Fig. 8.49 Press-fit Force

8.8.5 Operation Inspection

Verify satisfactory service with a test run. General precautions for a test run are:

- Make sure that all drive covers are in place, all bolts and nuts are tight, and appropriate clearance is provided between the shaft and all stationary parts.
- If possible, manually turn the shaft to see if there is rubbing or abnormal noise.
- If the machine is large and the shaft cannot be turned by hand, start the machine at as low speed as possible and check for rubbing or abnormal noise while coasting the machine.
- If no trouble is found during the above checks, run the machine at the design speed until attaining a steady-state temperature.
- Recheck bolt and nut tightness. Check for oil leaks, and abnormal noise. If possible, extract a sample of the oil and check it for foreign matter.
- Begin regular operation.

If trouble is encountered during machine operation, refer to Section 9, "Trouble-shooting Bearing Problems".

8.8.6 Dismounting

Bearings may be dismounted for periodic machine inspection, or when machine break down has occurred. The condition of all rotating parts and interfaces should be checked and recorded to collect data for operating improvements. The recording of data is essential where a parts failure has occurred to enable a solution to any existing trouble.

In dismounting the bearing, check to see:

- If the bearing is satisfactorily mounted. (Bolts, and nuts tightened, interference of slinger with bearing housing, etc.)
- If there is (was) an adequate lube supply. Check for lubricant contamination and sample for residues.
- That the inner and outer ring have retained the fits as mounted.
- If the bearing clearance is as specified. If possible, measure the clearance of the mounted bearing.
- The condition of the bearing.

 $[Continue \rightarrow]$

Before starting to dismount a bearing, review the following points:

- Dismount method
- Fit conditions
- Jigs required for dismounting
 - Press (Fig. 8.50)
 - Spanner wrench (Fig. 8.51)
 - Puller (Fig. 8.52)
 - Special puller (Fig. 8.53)
 - Holder (Fig. 8.54)

To dismount a Cylindrical roller bearing, the inner ring may be locally heated with an induction heater to facilitate removal from the shaft. (See Fig. 8.55.)

For large-bore bearings, which are often difficult to dismount, a hydraulic nut or oil injector system is recommended. See Fig. 8.45 and Fig. 8.56 respectively.

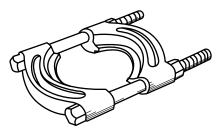


Fig. 8.54 Puller Attachment

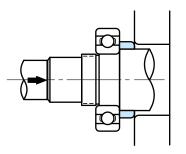


Fig. 8.50 Dismounting Bearing **Using Press**

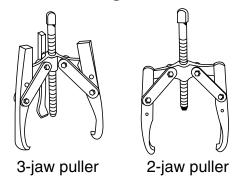


Fig. 8.52

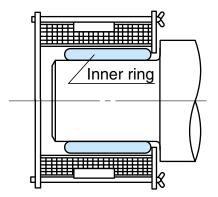


Fig. 8.55 Inner Ring Removal with Induction Heater

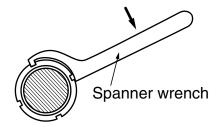


Fig. 8.51 Dismounting Bearing with Spanner Wrench

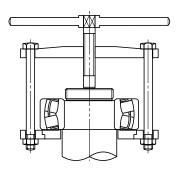


Fig. 8.53 Dismounting Bearing with Special Puller

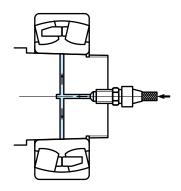


Fig. 8.56 Oil Injector

Main Menu

9. Trouble-shooting Bearing Problems

Rolling contact bearings must be carefully handled, mounted, and maintained in order to operate satisfactorily.

The cause of unsatisfactory operation must be determined to prevent recurrence. There are three categories of data which should be gathered to enable the correct diagnosis of bearing problems:

- Time of occurrence.
- Symptoms during operation.
- Condition of bearing.

Although the origin of bearing problems can sometimes be determined using data from only one of the data categories, quick and accurate analysis requires as much data as possible.

See Tables 9.1, <u>9.2 and 9.3</u>.

Table 9.1 Time of Occurrence

Cause Time of Occurrence	Bearing selection	Design or manufacture of other drive parts	Lubricant type, system or amount	Defective bearing	Bearing installation	Seal failure
Soon after installation	0	0	0	0	0	
Soon after periodic disassembly			0		0	
Soon after re-lubrication			0			
After replacement or repair of other drive parts		0	0		0	
During normal operation						0

Table 9.2 Symptom During Operation

	Operation condition	Cause	Remarks				
	Low level metallic sound	Impressions on raceway					
Noise	High level metallic sound	Loss of clearance, poor lubrication					
Noise	Irregular sound	Excess clearance, contaminants, defect of rolling element surface, improper lube	Check with audiophone, vibration pickup, etc				
	Ever-changing sound	Change of clearance by temperature rise Defect in progress on raceway					
Abnorr	mal temperature rise	Loss of clearance, creep, insufficient or excess lubricant, excess load	Use a surface thermometer.				
Reduc	tion in accuracy	Raceway or rolling element broken by impurities, or insufficient lubricant	Example: Lathe: stick-slip marks Grinder: wavy pattern Cold roll mill: occulting wave pattern				
Unstab	ole operation	Broken raceway, rolling element Foreign matter Excess clearance	Example: vibration				
Contar	minated lubricant	Poor lubrication, foreign matter, wear					

Table 9.3

(1) Premature Flaking

(4) Brinelling

(7) Excessive Wear

(2) Seizure

(5) Fretting

(8) Rusting, Corrosion

(3) Breakage

(6) Smearing

(9) Creep

(1) Premature Flaking

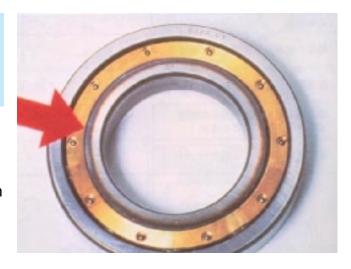
The repeated heavy stress cycle between the bearing raceway and rolling element surface results in fatigue cracks which become loosened from bearing materials.

■ Causes

- caused by expanded shaft.
- Deflection or misalignment of shaft.
- Poor parallelism of inner and outer rings.
- Poor lublication
- Rusting, Nicks, Galling from dirt, etc.

■ Countermeasures

- Abnormal axial load or excessive load
 Abnormal axial load or excessive load caused by expanded shaft.
 - Deflection or misalignment of shaft.
 - Poor parallelism of inner and outer rings.
 - Poor lublication
 - Rusting, Nicks, Galling from dirt, etc.


(2) Seizure

Bearing is seized up by excessive heat. Discoloration, softening and fusion of raceway and rolling element.

■ Causes

- Loss of clearance
- Operating over limiting speed
- Poor or improper lubricant.

- Review fitting and bearing clearance.
- Review type of bearing.
- Select a proper lubricant, and feed it in proper quantity.

(3) Breakage

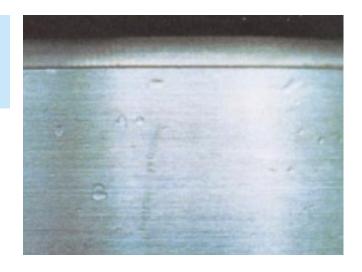
Splits and cracks in the inner/outer ring or rolling element.

■ Causes

- Excessive interference fit.
- Bearing seat has larger corner radius than bearing.
- Excess clearance during operation.
- Excess impact load.

■ Countermeasures

- Check fits. Finish shaft and sleeve to higher accuracy.
- Make shaft corner radius smaller than that of the bearing.
- Check fits and bearing clearance.
- Re-check load conditions.


(4) Brinelling

Brinelling, indentation and pear skin of bearing raceway and rolling element.

■ Causes

- Impact applied during mounting.
- Impact from dropped bearing
- Contamination
- Load applied to bearing at rest in excess of static load rating.

- Carefully handle the bearing.
- Clean shaft and housing
- Improve the sealing
- · Re-check load conditions.

(5) Fretting

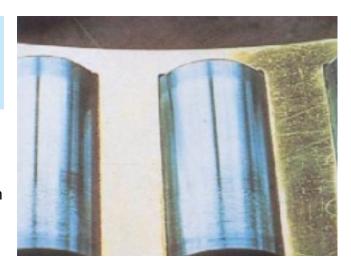
Occurred when a small relative motion is repeatedly caused in non rotating bearing. Fretting surface wear producing red colored particles at fitting surface.

■ Causes

- Vibration applied to bearing at rest (e. g. during shipment)
- swing with smaller amplitude.
- Minute clearance on fit surface.
- Slight sliding during operation as a result
 Apply oil reduced interference under a load.

■ Countermeasures

- Fix the shaft and housing during shipment.
- Apply a preload. Use oil for lubrication.
- Increase the interference.


(6) Smearing

Metal to metal contact due to the destruction of oil film. Sliding motion between outer/inner ring and rolling element.

■ Causes

- Excess axial load. Misalignment of bearing.
- Poor lubrication.
- Intrusion and galling of foreign matter.
- High acceleration on start-up.

- Correct mounting errors.
- Review the load condition.
- · Select a proper lubricant, and feed it in proper quantity.
- Improve the sealing.
- Clean shaft and housing.
- Avoid sharp acceleration.

(7) Excessive Wear

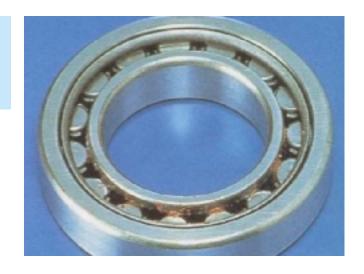
Abnormal wear of flange face, rolling element and retainer.

■ Causes

- Foreign matter and corrosion acting as lapping agent
- Insufficient or incorrect lubricant.

■ Countermeasures

- Improve sealing
- Clean shaft and housing
- Check lubricant for type and amount.


(8) Rusting, Corrosion

Rusting and corrosion of bearing ring and rolling element surface.

■ Causes

- Improper storage, cleaning.
- Improper washing oil.
- Poor rust prevention
- Corrosive gas, liquid or water.
- Handling with unprotected hand.
- · Chemical action of lubricant.

- Improve storage and handling.
- Re-check washing oil
- Review rust prevention.
- Improve sealing
- · Correct handling.
- Check lubricant.

(9) Creep

Galling, wear, sliding and discoloration of fit face.

■ Causes

- Insufficient interference.
- Insufficient tightened sleeve.
- Insufficient surface pressure due to low rigidity and inaccurate shaft and housing.

- · Check fits.
- Tighten sleevel
- Redesign for greater rigidity.

(1/4)

Unit: μ m

							Beai	ring with	cylindri	cal bore							
Bearing bore diameter Nominal			Single plane mean bore diameter deviation Deviation Δd mp											viation of a single bore diameter (2) $\triangle d_s$			
d (mn	n)	Cla	0	Ola	0	Ola	F	Olas	01 4		0	Clas	ss 4 er series	Ola	0		
(mm)		Cia	ss 0	Class 6		Cia	Class 5		Class 4		ss 2	0,1,2		Cia	ss 2		
Over	Incl.	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low		
0.6 ⁽¹⁾ 2.5 10	2.5 10 18	0 0 0	- 8 - 8 - 8	0 0 0	- 7 - 7 - 7	0 0 0	- 5 - 5 - 5	0 0 0	- 4 - 4 - 4	0 0 0	-2.5 -2.5 -2.5	0 0 0	- 4 - 4 - 4	0 0 0	-2.5 -2.5 -2.5		
18 30 50	30 50 80	0 0 0	- 10 - 12 - 15	0 0 0	- 8 -10 -12	0 0 0	- 6 - 8 - 9	0 0 0	- 5 - 6 - 7	0 0 0	-2.5 -2.5 -4	0 0 0	- 5 - 6 - 7	0 0 0	-2.5 -2.5 -4		
80 120 150	120 150 180	0 0 0	- 20 - 25 - 25	0 0 0	-15 -18 -18	0 0 0	-10 -13 -13	0 0 0	- 8 -10 -10	0 0 0	-5 -7 -7	0 0 0	- 8 -10 -10	0 0 0	-5 -7 -7		
180 250 315	250 315 400	0 0 0	- 30 - 35 - 40	0 0 0	-22 -25 -30	0 0 0	-15 -18 -23	0 _ _	-12 - -	<u>0</u> _	-8 - -	0 _ _	-12 - -	<u>0</u> _	-8 - -		
400 500 630	500 630 800	0 0 0	- 45 - 50 - 75	0 0 -	-35 -40 -				_ _ _		- - -			=	- - -		
800 1000 1250 1600	1000 1250 1600 2000	0 0 0	-100 -125 -160 -200		= =		=		= =		=		_ _ _ _	=	= = =		

Notes: (1) This diameter is included in this group.

- (2) Applies to bearings with cylindrical bore.
- (3) Width deviation and variation of outer ring are the same with of inner ring. Outer ring width variation of classes 5, 4 and 2 are listed in Table 5.1.2.
- (4) Applies to the rings of single bearings made for paired of stack mounting.
- (5) Applies ro radial ball bearings such as deep groove ball bearing, angular contact ball bearings.

(2/4)

Unit: μ m

Bearing																				
Rearing			Bearing with cylindrical bor											ore						
diameter N			Bore	e diame	eter var	iation in V_{i}	Main bore diameter variation (2) Vd_{mp}													
d			Class C)		Class 6		Clas	ss 5	Clas	ss 4									
(mm))	Dian	neter s	eries	Dian	neter s	eries	Diamete	r series	Diamete	r series	Class 2	Class 0	Class 6	Class 5	Class 4	Class 2			
		7,8,9	0,1	2,3,4	7,8,9	0,1	2,3,4	7,8,9	7,8,9 0,1,2,3,4 7,8,9 0,1,2,3,4											
Over	Incl.		Max			Max		M	ax	Ma	ax	Max	Max	Max	Max	Max	Max			
0.6 ⁽¹⁾ 2.5 10	2.5 10 18	10 10 10	8 8 8	6 6	9 9 9	7 7 7	5 5 5	5 5 5	4 4 4	4 4 4	3 3 3	2.5 2.5 2.5	6 6	5 5 5	3 3 3	2 2 2	1.5 1.5 1.5			
18 30 50	30 50 80	13 15 19	10 12 19	8 9 11	10 13 15	8 10 15	6 8 9	6 8 9	5 6 7	5 6 7	4 5 5	2.5 2.5 4	8 9 11	6 8 9	3 4 5	2.5 3 3.5	1.5 1.5 2			
80 120 150	120 150 180	25 31 31	25 31 31	15 19 19	19 23 23	19 23 23	11 14 14	10 13 13	8 10 10	8 10 10	6 8 8	5 7 7	15 19 19	11 14 14	5 7 7	4 5 5	2.5 3.5 3.5			
180 250 315	250 315 400	38 44 50	38 44 50	23 26 30	28 31 38	28 31 38	17 19 23	15 18 23	12 14 18	12 - -	9 - -	8 _ _	23 26 30	17 19 23	8 9 12	6 _ _	4 _ _			
400 500 630	500 630 800	56 63 –	56 63 –	34 38 -	44 50 –	44 50 –	26 30 –		_ _ _	_ _ _	_ _ _	_ _ _	34 38 -	26 30 -	=	_ _ _	_ _ _			
800	1000 1250	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			
1000 1250 1600	1600 2000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			

Notes: (1) This diameter is included in this group.

- (2) Applies to bearings with cylindrical bore.
- (3) Width deviation and variation of outer ring are the same with of inner ring. Outer ring width variation of classes 5, 4 and 2 are listed in Table 5.1.2.
- (4) Applies to the rings of single bearings made for paired of stack mounting.
- (5) Applies ro radial ball bearings such as deep groove ball bearing, angular contact ball bearings.

(3/4)

Unit: μ m

Bearing bore diameter Nominal d (mm)		Deviation of a single inner ring width (or a single outer ring width) (2) $\triangle B_s$ (or $\triangle C_s$)											Inner (or outer) ring width variation V_{BS} (or V_{CS})				
				Single I	pearing	Paired c			or stack m	stack mounted bearing (4)			Inner ring		Inner ring		
		Class 0 Class 6		Class 5 Class 4		Class 2		Class 0 Class 6		Class 5 Class 4		(or outer ring) (3) Class 0 Class 6		Class 5 Class 4			
Over	Incl.	High	Low	High	Low	High	Low	High	Low	High	Low	Max	Max	Max	Max	Max	
0.6(1) 2.5 10	2.5 10 18	0 0 0	- 40 - 120 - 120	0 0 0	- 40 - 40 - 80	0 0 0	- 40 - 40 - 80	_ 0 0	_ -250 -250	0 0 0	-250 -250 -250	12 15 20	12 15 20	5 5 5	2.5 2.5 2.5	1.5 1.5 1.5	
18 30 50	30 50 80	0 0 0	- 120 - 120 - 150	0 0	-120 -120 -150	0 0 0	-120 -120 -150	0	-250 -250 -380	0	-250 -250 -250	20 20 25	20 20 25	5 5 6	2.5 3 4	1.5 1.5 1.5	
80 120 150	120 150 180	0 0 0	- 200 - 250 - 250	0 0	-200 -250 -250	0 0 0	-200 -250 -250	0	-380 -500 -500	0 0	-380 -380 -380	25 30 30	25 30 30	7 8 8	4 5 5	2.5 2.5 4	
180 250 315	250 315 400	0 0 0	- 300 - 350 - 400	0 0 0	-300 -350 -400	<u>0</u> _	-300 - -	0	-500 -500 -630	0 0 0	-500 -500 -630	30 35 40	30 35 40	10 13 15	6 - -	5 - -	
400 500 630	500 630 800	0 0 0	- 450 - 500 - 750	- - -	_ _ _	_ _ _	_ _ _			_ _ _		50 60 70	45 50 –	- - -	_ _ _	=	
800 1000 1250 1600	1000 1250 1600 2000	0 0 0	-1000 -1250 -1600 -2000	_ _ _ _	_ _ _ _	_ _ _ _	_ _ _ _	_ _ _ _	_ _ _ _	_ _ _ _	- - - -	80 100 120 140	_ _ _ _	_ _ _ _	_ _ _ _		

Notes: (1) This diameter is included in this group.

- (2) Applies to bearings with cylindrical bore.
- (3) Width deviation and variation of outer ring are the same with of inner ring. Outer ring width variation of classes 5, 4 and 2 are listed in Table 5.1.2.
- (4) Applies to the rings of single bearings made for paired of stack mounting.
- (5) Applies ro radial ball bearings such as deep groove ball bearing, angular contact ball bearings.

													Office perior	
	Bearing bore diameter Nominal d (mm)		Radia	runout of	assemble K_{ia}	d bearing i	nner ring	Inner ring reference face runout with bore Sd			Assembled bearing inner ring face runout with raceway Sia (5)			
			Class 0	Class 6	Class 5	Class 4	Class 2	Class 5	Class 4	Class 2	Class 5	Class 4	Class 2	
	Over	Incl.	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	
	0.6(1) 2.5 10	2.5 10 18	10 10 10	5 6 7	4 4 4	2.5 2.5 2.5	1.5 1.5 1.5	7 7 7	3 3 3	1.5 1.5 1.5	7 7 7	3 3 3	1.5 1.5 1.5	
	18 30 50	30 50 80	13 15 20	8 10 10	4 5 5	3 4 4	2.5 2.5 2.5	8 8 8	4 4 5	1.5 1.5 1.5	8 8 8	4 4 5	2.5 2.5 2.5	
	80 120 150	120 150 180	25 30 30	13 18 18	6 8 8	5 6 6	2.5 2.5 5	9 10 10	5 6 6	2.5 2.5 4	9 10 10	5 7 7	2.5 2.5 5	
	180 250 315	250 315 400	40 50 60	20 25 30	10 13 15	8 _ _	5 _ _	11 13 15	7 _ _	5 _ _	13 15 20	8 - -	5 - -	
	400 500 630	500 630 800	65 70 80	35 40 –	_ _ _	= =	_ _ _		_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	
	800 1000 1250 1600	1000 1250 1600 2000	90 100 120 140	_ _ _ _	_ _ _ _	_ _ _ _	- - - -	= =	_ _ _	_ _ _	_ _ _	_ _ _ _	_ _ _ _	

Notes: (1) This diameter is included in this group.

- (2) Applies to bearings with cylindrical bore.
- (3) Width deviation and variation of outer ring are the same with of inner ring. Outer ring width variation of classes 5, 4 and 2 are listed in Table 5.1.2.
- (4) Applies to the rings of single bearings made for paired of stack mounting.
- (5) Applies ro radial ball bearings such as deep groove ball bearing, angular contact ball bearings.

				Bearing outside diameter													
Bearing outside diameter Nominal D (mm)			Single plane mean outside diameter deviation De $\triangle D_{\text{mp}}$											eviation of a single outside diameter $\triangle D_s$			
			Class 0		Class 6		Class 5		Class 4		Class 2		Class 4				
		Cla											Diameter series 0,1,2,3,4		Class 2		
Over	Incl.	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low		
2.5 ⁽¹ 6 18) 6 18 30	0 0 0	- 8 - 8 - 9	0 0 0	- 7 - 7 - 8	0 0 0	- 5 - 5 - 6	0 0 0	- 4 - 4 - 5	0 0 0	- 2.5 - 2.5 - 4	0 0 0	- 4 - 4 - 5	0 0 0	- 2.5 - 2.5 - 4		
30 50 80	50 80 120	0 0 0	- 11 - 13 - 15	0 0 0	- 9 -11 -13	0 0 0	- 7 - 9 -10	0 0 0	- 6 - 7 - 8	0 0 0	- 4 - 4 - 5	0 0 0	- 6 - 7 - 8	0 0 0	- 4 - 4 - 5		
120 150 180	150 180 250	0 0 0	- 18 - 25 - 30	0 0 0	-15 -18 -20	0 0 0	-11 -13 -15	0 0 0	- 9 -10 -11	0 0 0	- 5 - 7 - 8	0 0 0	- 9 -10 -11	0 0 0	- 5 - 7 - 8		
250 315 400	315 400 500	0 0 0	- 35 - 40 - 45	0 0 0	-25 -28 -33	0 0 0	-18 -20 -23	0 0 —	-13 -15 -	0 0 -	- 8 -10 -	0 0 -	-13 -15 -	0 0 -	- 8 -10 -		
500 630 800	630 800 1000	0 0 0	- 50 - 75 -100	0 0 0	-38 -45 -60	0 0 -	-28 -35 -		_ _ _		_ _ _	_ _ _	_ _ _	_ _ _	= = =		
1000 1250 1600 2000	1250 1600 2000 2500	0 0 0 0	-125 -160 -200 -250	_ _ _ _	_ _ _ _	- - - -	_ _ _	- - - -	_ _ _ _	_ _ _	_ _ _ _	- - - -	- - - -	- - -			

Notes: (1) This diameter is included in this group.

- (2) Applies before mounting and after removal of internal or external snap ring.
- (3) Applies to radial ball bearings such as deep groove ball bearings, angular contact ball bearings.
- (4) Outer ring width variation of class 0 and 6 are listed in Table 5.1.1.
- (5) Applies to radial ball bearings such as deep groove ball bearing, angular contact ball bearings.

Unit: μ m

									e diamete					
Bearing	outside				Outs	side dian	neter var		a single	radial pl	ane (2)			
	Nominal		Cla	ss 0			Cla	$rac{V_{D}}{ m ss}$ 6	<u> </u>	Cla	.ss 5	Cla	ss 4	
_	O lm)		en bear		l ⋅ shield	Op	en bear	ing S	eal · shield	Open	bearing		bearing	Class 2
(111	1111)		ameter s		earing		Diameter		bearing		er series			Open bearing
Over	Inal	7,8,9 Max	0,1 May	2,3,4	2,3,4	7,8,9 Max	0,1 Max	2,3,4	$\frac{0,1,2,3,4}{\text{Max}}$	7,8,9	0,1,2,3,4	7,8,9	0,1,2,3,4	
	Incl.	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max
2.5 ⁽¹⁾ 6 18) 6 18 30	10 10 12	8 8 9	6 6 7	10 10 12	9 9 10	7 7 8	5 5 6	9 9 10	5 5 6	4 4 5	4 4 5	3 3 4	2.5 2.5 4
30 50 80	50 80 120	14 16 19	11 13 19	8 10 11	16 20 26	11 14 16	9 11 16	7 8 10	13 16 20	7 9 10	5 7 8	6 7 8	5 5 6	4 4 5
120 150 180	150 180 250	23 31 38	23 31 38	14 19 23	30 38 -	19 23 25	19 23 25	11 14 15	25 30 –	11 13 15	8 10 11	9 10 11	7 8 8	5 7 8
250 315 400	315 400 500	44 50 56	44 50 56	26 30 34	- - -	31 35 41	31 35 41	19 21 25	- - -	18 20 23	14 15 17	13 15 -	10 11 -	8 10 -
500 630 800	630 800 1000	63 94 125	63 94 125	38 55 75	_ _ _	48 56 75	48 56 75	29 34 45	_ _ _	28 35 –	21 26 –			_ _ _
1000 1250	1250 1600	_	_	_	_	_	_	_	_	_	_	_	_	_
1600 2000	2000 2500			_			_	=	=			_		_ _ _

Notes: (1) This diameter is included in this group.

- (2) Applies before mounting and after removal of internal or external snap ring.
- (3) Applies to radial ball bearings such as deep groove ball bearings, angular contact ball bearings.
- (4) Outer ring width variation of class 0 and 6 are listed in Table 5.1.1.
- (5) Applies to radial ball bearings such as deep groove ball bearing, angular contact ball bearings.

Remarks: The high deviation of bearing cylindrical bore diameter specified in this table does not apply within a distance of $1.2 \times r$ (max) from the ring face.

Unit: μ m

Bearing diameter	Nominal)	Mea			e diamete ter variatio		F		nout of a ring oute <i>K</i> ea	assemble er ring	ed	suface of	generarix	ring outside cinclination eference face
(m	m)	Class 0	Class 6	Class 5	Class 4	Class 2	Class 0	Class 6	Class 5	Class 4	Class 2	Class 5	Class 4	Class 2
Over	Incl.	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max
2.5(¹) 6	6	5	3	2	1.5	15	8	5	3	1.5	8	4	1.5
6	18	6	5	3	2	1.5	15	8	5	3	1.5	8	4	1.5
18	30	7	6	3	2.5	2	15	9	6	4	2.5	8	4	1.5
30	50	8	7	4	3	2	20	10	7	5	2.5	8	4	1.5
50	80	10	8	5	3.5	2	25	13	8	5	4	8	4	1.5
80	120	11	10	5	4	2.5	35	18	10	6	5	9	5	2.5
120	150	14	11	6	5	2.5	40	20	11	7	5	10	5	2.5
150	180	19	14	7	5	3.5	45	23	13	8	5	10	5	2.5
180	250	23	15	8	6	4	50	25	15	10	7	11	7	4
250	315	26	19	9	7	4	60	30	18	11	7	13	8	5
315	400	30	21	10	8	5	70	35	20	13	8	13	10	7
400	500	34	25	12	-	–	80	40	23	-	–	15	–	–
500	630	38	29	14	_	-	100	50	25	_	_	18	_	_
630	800	55	34	18	_	-	120	60	30	_	_	20	_	_
800	1000	75	45	-	_	-	140	75	–	_	_	—	_	_
1000 1250 1600 2000	1250 1600 2000 2500			- - -			160 190 220 250				- - - -	- - -		

Notes: (1) This diameter is included in this group.

- (2) Applies before mounting and after removal of internal or external snap ring.
- (3) Applies to radial ball bearings such as deep groove ball bearings, angular contact ball bearings.
- (4) Outer ring width variation of class 0 and 6 are listed in Table 5.1.1.
- (5) Applies to radial ball bearings such as deep groove ball bearing, angular contact ball bearings.

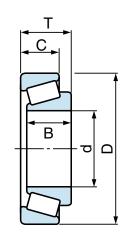
Remarks: The high deviation of bearing cylindrical bore diameter specified in this table does not apply within a distance of $1.2 \times r$ (max) from the ring face.

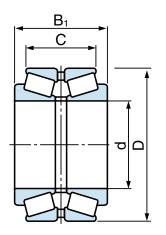
Bearing diameter		Assembled runout with			e Outer	ring width V_{C} s (4)	
(mı		Class 5	Class 4	Class 2	Class 5	Class 4	Class 2
Over	Incl.	Max	Max	Max	Max	Max	Max
2.5 ⁽¹) 6	8	5	1.5	5	2.5	1.5
6	18	8	5	1.5	5	2.5	1.5
18	30	8	5	2.5	5	2.5	1.5
30	50	8	5	2.5	5	2.5	1.5
50	80	10	5	4	6	3	1.5
80	120	11	6	5	8	4	2.5
120	150	13	7	5	8	5	2.5
150	180	14	8	5	8	5	2.5
180	250	15	10	7	10	7	4
250	315	18	10	7	11	7	5
315	400	20	13	8	13	8	7
400	500	23	-	–	15	-	–
500	630	25	_	-	18		_
630	800	30	_	-	20		_
800	1000	–	_	-	–		_
1000 1250 1600 2000	1250 1600 2000 2500		- - - -		- - - -	- - - -	

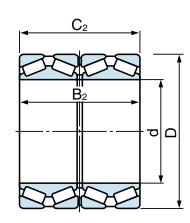
Notes: (1) This diameter is included in this group.

- (2) Applies before mounting and after removal of internal or external snap ring.
- (3) Applies to radial ball bearings such as deep groove ball bearings, angular contact ball bearings.
- (4) Outer ring width variation of class 0 and 6 are listed in Table 5.1.1.
- (5) Applies to radial ball bearings such as deep groove ball bearing, angular contact ball bearings.

Remarks: The high deviation of bearing cylindrical bore diameter specified in this table does not apply within a distance of $1.2 \times r$ (max) from the ring face.

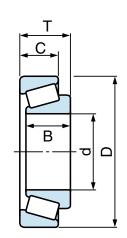


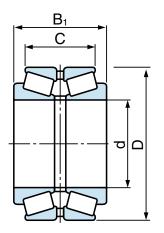

П	hi	it:	μ m
U	'	IL.	μ

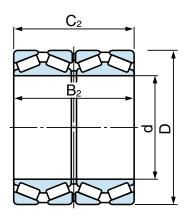

Bearing	n hore						Bearir	ng bo	re dia	ameter				
diameter	Nominal		gle plar /iation	ne mea $\triangle d$		e diame	eter			of a single eter Δd_s		liamete radial p		
(mr		Clas Clas	s 0 s 6X	Clas Clas		Cla	ss 4		Cla	ss 4	Class 0 Class 6X	Class 6	Class 5	Class 4
Over	Incl.	High	Low	High	Low	High	Low	H	ligh	Low	Max	Max	Max	Max
10 18 30	18 30 50	000	-12 -12 -12	0 0 0	- 7 - 8 -10	0 0 0	- 5 - 6 - 8		0	- 5 - 6 - 8	12 12 12	7 8 10	568	456
50 80 120	80 120 180	0	-15 -20 -25	0	-12 -15 -18	0 0 0	- 9 -10 -13		0	- 9 -10 -13	15 20 25	12 15 18	9 11 14	7 8 10
180 250 315	250 315 400	0 0 0	-30 -35 -40	0 _ _	-22 - -	0 _ _	-15 - -		<u>0</u>	–15 – –	30 35 40	22 _ _	17 _ _	11 _ _
400 500 630	500 630 800	0	-45 -50 -75	=		=					=	=	=	

Remarks:

- 1. The high deviation of bearing bore diameter specified in this table does not apply within a distance of $1.2 \times r$ (max) from the ring face.
- 2. Some of these tolerances conform with the NACHI Standard.

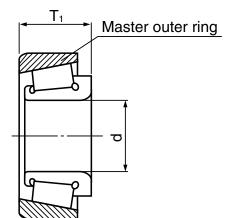


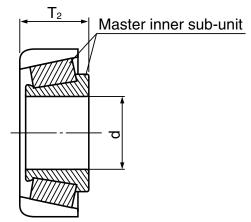

Unit: μ m


												•
Bearing diameter d (mi	Nominal I	Me	ean bor riation	e diame e diame Vdmp Class 5	eter	Radial r be Class 0 Class 6X	aring in K	nner rir ia		Inner refere face ru with t S Class 5	ence unout oore	Assembled bearing inner ring face runout with raceway Sia
Over	Incl.	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max
10 18 30	18 30 50	9 9 9	5 6 8	5 5 5	4 4 5	15 18 20	7 8 10	5 5 6	3 3 4	7 8 8	3 4 4	3 4 4
50 80 120	80 120 180	11 15 19	9 11 14	6 8 9	5 5 7	25 30 35	10 13 18	7 8 11	4 5 6	8 9 10	5 5 6	4 5 7
180 250 315	250 315 400	23 26 30	16 - -	11 _ _	8 _ _	50 60 70	20 _ _	13 _ _	8 - -	11 _ _	7 _ _	8 - -
400 500 630	500 630 800	_ _ _	=	=	=	70 85 100	_ _ _	_ _ _	_ _ _			

Remarks:

- 1. The high deviation of bearing bore diameter specified in this table does not apply within a distance of $1.2 \times r$ (max) from the ring face.
- 2. Some of these tolerances conform with the NACHI Standard.

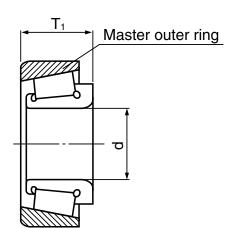

(1/2)

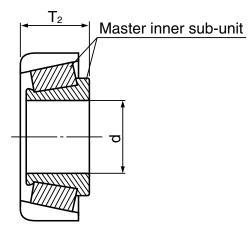

					Unit:	μ m
Be	aring ou	tside dia	meter			
		Outsides a sing				
Clas	ss 4	Class 0 Class 6X	Class 6	Class 5	Class 4	
h	Low	Max	Max	Max	Max	
	- 6 - 7 - 9	12 14 16	8 9 11	6 7 8	5 5 7	
	4.0	4.0	4.0	4.0		

Dearing of	utaida								, a.i.i.g					
Bearing or diameter N		Singl devia	le plane ation	mean ⊿D		e diam		eviation of utside diar				eter varia plane <i>V</i>		
(mm))		ss 0 ss 6X	Clas Clas		Cla	ss 4	Cla	ss 4	Class 0 Class 6X	Class 6	Class 5	Class 4	
Over	Incl.	High	Low	High	Low	High	Low	High	Low	Max	Max	Max	Max	
18 30 50	30 50 80	0 0 0	- 12 - 14 - 16	0 0 0	- 8 - 9 -11	0 0 0	- 6 - 7 - 9	0 0 0	- 6 - 7 - 9	12 14 16	8 9 11	6 7 8	5 5 7	
80 120 150	120 150 180	0 0 0	- 18 - 20 - 25	0 0 0	-13 -15 -18	0 0 0	-10 -11 -13	0 0 0	-10 -11 -13	18 20 25	13 15 18	10 11 14	8 8 10	
180 250 315	250 315 400	0 0 0	- 30 - 35 - 40	0 0 0	-20 -25 -28	0 0 0	-15 -18 -20	0 0 0	-15 -18 -20	30 35 40	20 25 28	15 19 22	11 14 15	
400 500 630 800	500 630 800 1000	0 0 0 0	- 45 - 50 - 75 -100	= =	= =	= =	_ _ _ _	_ _ _ _	_ _ _	45 50 – –	= =			
							_				_			

Remarks: 1. The low deviation of bearing outside diameter specified in this table does not apply within a distance of $1.2 \times r$ (max) from the ring face.

2. Some of these tolerances conform with the NACHI Standard.




Unit: μ m

Bearing diameter [(m	Nominal)	Mea	an outsi ation <i>V</i>	ide dian ide dian IDmp Class 5	neter	Radial rubea Class 0 Class 6X	ring ou	iter rin		outside generatrix with oute	e face S D $_$	Assembled bearing outer ring face runout with raceway Sea
Over	Incl.	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max
18	30	9	6	5	4	18	9	6	4	8	4	5
30	50	11	7	5	5	20	10	7	5	8	4	5
50	80	12	8	6	5	25	13	8	5	8	4	5
80	120	14	10	7	5	35	18	10	6	9	5	6
120	150	15	11	8	6	40	20	11	7	10	5	7
150	180	19	14	9	7	45	23	13	8	10	5	8
180	250	23	15	10	8	50	25	15	10	11	7	10
250	315	26	19	13	9	60	30	18	11	13	8	10
315	400	30	21	14	10	70	35	20	13	13	10	13
400 500 630 800	500 630 800 1000	34 38 - -	_ _ _ _	_ _ _ _	_ _ _ _	80 100 120 120	_ _ _ _	_ _ _ _	_ _ _ _	_ _ _ _	_ _ _ _	

Remarks: 1. The low deviation of bearing outside diameter specified in this table does not apply within a distance of $1.2 \times r$ (max) from the ring face.

2. Some of these tolerances conform with the NACHI Standard.

Table 5.2.3 Deviations of Single Ring Width, Bearing Width and Duplex/Stack Mounted Bearing Width Unit: μ m

Bearin diam	neter	Devi	ation of	7	gle inn Bs	er ring	g width	Dev	iation c		gle out	er ring	width	
Nom (m	d		ass 0 ass 6	Class	s 6X		ass 5 ass 4		iss 0 iss 6	Class	s 6X	Clas Clas		
Over	Incl.	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	
10 18 30	18 30 50	0 0 0	-120 -120 -120	0 0 0	-50 -50 -50	0 0 0	-200 -200 -240	0 0 0	-120 -120 -120	0 0 0	-100 -100 -100	0 0 0	-200 -200 -240	
50 80 120	80 120 180	0 0 0	-150 -200 -250	0 0 0	-50 -50 -50	0 0 0	-300 -400 -500	0 0 0	-150 -200 -250	0 0 0	-100 -100 -100	0 0 0	-300 -400 -500	
180 250 315	250 315 400	0 0 0	-300 -350 -400	0 0 0	-50 -50 -50	<u>0</u> _	-600 - -	0 0 0	-300 -350 -400	0 0 0	-100 -100 -100	0 - -	-600 - -	
400 500 630	500 630 800	0 0 0	-450 -500 -750	_ _ _	_ _ _	_ _ _		0 0 0	-450 -500 -750	_ _ _	_ _ _	_ _ _	_ _ _	

Remarks: Effective width of an inner sub-unit T₁ is the bearing width obtained when this sub-unit is mated with a master outer ring. Effective width of an outer ring T2 is the bearing width obtained when this ring is mated with a master inner sub-unit.

Table 5.2.3 Deviations of Single Ring Width,
Bearing Width and Duplex/Stack Mounted Bearing Width

Unit: μ m

Bearing bore Deviation of the actual effective width Deviation of a actual bearing width diameter of inner sub-unit ΔT_{18} ΔT_{S} Nominal Class 0 Class 5 d Class 6X Class 6X Class 0 Class 6 Class 4 (mm) High High Over Incl. Low High Low Low High Low High Low 10 18 +200 +100 0 +200 -200+100 0 + 50 0 18 +200 +1000 +200 -200+ 50 30 +1000 0 30 + 50 50 +200 +100 +200 -200+100 0 0 -200+100 0 50 80 +200 0 +100 +200 + 50 0 80 +1000 120 +200 -200+200 -200+100-10050 0 120 180 +350 -250+150+350 -250-150+ 50 +1500 180 +350 -250+150 +350 -250250 +150 -1500 + 50 250 0 -150+100 0 315 +350 -250+200 +150315 400 +400 -400+200 +200 -200+100 0 -400400 +400 500 500 -500630 +500630 800 +600 -600

Remarks: Effective width of an inner sub-unit T₁ is the bearing width obtained when this sub-unit is mated with a master outer ring.

Effective width of an outer ring T₂ is the bearing width obtained when this ring is mated with a master inner sub-unit.

Table 5.2.3 Deviations of Single Ring Width,
Bearing Width and Duplex/Stack Mounted Bearing Width

Unit: μ m

									<u> </u>
Bearing bo		Deviat	ion of the a	actual effe	ctive	Deviation o	f duplex/stack	mounted bea	aring width
diamete Nomina		width o	of outer sub	o-unit ⊿	T ₂₈		18	ΔB_{2S}	ΔC_{2S}
d (mm)	.1	Cla	ss 0	Class	s 6X	•	inted bearing ss 0		v bearing ss 0
Over In	ncl.	High	Low	High	Low	High	Low	High	Low
18 :	18 30 50	+100 +100 +100	0 0 0	+ 50 + 50 + 50	0 0 0	+ 200 + 200 + 240	- 200 - 200 - 240	_ _ _	_ _ _
80 12	80 20 80	+100 +100 +200	0 -100 -100	+ 50 + 50 +100	0 0 0	+ 300 + 400 + 500	- 300 - 400 - 500	+ 400 + 500 + 600	- 400 - 500 - 600
250 3	50 15 00	+200 +200 +200	-100 -100 -200	+100 +100 +100	0 0 0	+ 600 + 700 + 800	- 600 - 700 - 800	+ 750 + 900 +1000	- 750 - 900 -1000
500 63	00 30 00	_ _ _	_ _ _	_ _ _	_ _ _	+ 900 +1000 +1500	- 900 -1000 -1500	+1200 +1200 +1500	-1200 -1200 -1500

Remarks: Effective width of an inner sub-unit T₁ is the bearing width obtained when this sub-unit is mated with a master outer ring.

Effective width of an outer ring T₂ is the bearing width obtained when this ring is mated with a master inner sub-unit.

Fits vs. Load Characteristics Table 8.1

Table 8.2.1 Bearing Bore (1) Fits for Radial Bearings

Table 8.2.2 Bearing Outside Diameter (1) Fits for Radial **Bearings**

Table 8.3.1 Bearing Bore or Center Washer Bore (1) Fits for Thrust Bearings

Table 8.3.2 Bearing Outside Diameter (1) Fits for Thrust Bearinas

Table 8.4 **Shaft Tolerances (1) for Radial Bearings**

Table 8.5 **Shaft Tolerances for Thrust Bearings**

Table 8.6 Housing Bore Tolerances (1) for Radial Bearings (Except Inch-series Tapered Roller Bearings)

Table 8.7 Housing Bore Tolerances for Thrust Bearings

Fits of Inch Series Tapered Roller Bearings with Shafts

For Bearings with ABMA Classes 4 and 2 **Table 8.8.1** For Bearings with ABMA Classes 3 and 0 **Table 8.8.2**

Fits of Inch Series Tapered Roller Bearings with Housings

Table 8.9.1 For Bearings with ABMA Classes 4 and 2 Table 8.9.2 For Bearings with ABMA Classes 3 and 0

Amounts of Fits: Radial Bearings with Tolerance JIS Class 0 (ISO Normal Class)

Table 8.10.1 Inner Ring with Shaft Table 8.10.2 Outer Ring with Housing

Amounts of Fits: Radial Bearings with Tolerance JIS (ISO) Class 6

Table 8.11.1 Inner Ring with Shaft Table 8.11.2 Outer Ring with Housing

Amounts of Fits: Radial Bearings with Tolerance JIS (ISO) Class 5

Table 8.12.1 Inner Ring with Shaft Table 8.12.2 Outer Ring with Housing

Amounts of Fits: Radial Bearings with Tolerance JIS (ISO) Class 4

Table 8.13.1 Inner Ring with Shaft Table 8.13.2 Outer Ring with Housing

Amounts of Fits: Thrust Bearings with Tolerance JIS (ISO) Class 0

Table 8.14.1 Shaft Washer or Center Washer with Shaft Table 8.14.2 Housing Washer with Housing

Table 8.1 Fits vs. Load Characteristics

Potating condition	Type of load	Load	F	it
Rotating condition	Type of load	conditions	Inner ring	Outer ring
inner ring	Non-rotating	Rotating inner ring load		Loose fit
outer ring	Rotating	Stationary outer ring load	Interference fit	Loose III
outer ring	Non-rotating	Rotating outer ring load	Loose fit	Interference fit
inner ring	Rotating	Stationary inner ring load		
Load direction not constant because of fluctuation unbalanced load	Rotating or Non-rotating	Indeterminate direction load	Interference fit	Interference fit

Table 8.2.1 Bearing Bore (1) Fits for Radial Bearings

Bearing tolerance				Fit cla	ss vs. load ty	/pe			
class						For rota outer ri	ating ng load		
Class 0, class 6	r 6	р6	n 6	m 5 m 6	k 5 k 6	j 5 j 6 js 6	h 5	h 5 h 6	g 5 g 6
Class 5, class 4	_	_	_	m 5	k 4	js 4	h 4	h 5	_

Table 8.2.2 Bearing Outside Diameter (1) Fits for Radial Bearings

Bearin	ng tolerance					Fit class vs. load type					
class		F	or rotating i	nner ring loa	ad	For indete	erminate dire	ection load	For rota	ating outer r	ing load
Clas	s 0, class 6	_	J 6 J 7	H 6 H 7	G 7	M 7	K 6 K 7	J 6 J 7	P 7	N 7	M 7
Clas	s 5, class 4	K 5	Js 5	H 5	_	_	_	_	_	_	M 5

Table 8.3.1 Bearing Bore or Center Washer Bore (1) Fits for Thrust Bearings

Bearing tole	erance		Fi	t class vs. load type		
class	class For cen		Fo	or composite load (sphe	erical roller thrust bea	ring)
Class (0	j 6 js 6	n 6	m 6	k 6	j 6 js 6

Table 8.3.2 Bearing Outside Diameter (1) Fits for Thrust Bearings

Bearing tolerance		Fit class vs. load type			
class	For centric axial load	For composite load (sph	nerical roller thrust bearing)		
Class 0	_	M 7	H 7		

Note: (1) These dimensional fits are based on JIS B 1514.

(1	/3	١
•	-		,

	()narating conditions Oyliidida idiei						
Opera			Bell bearings Spherical roller Spherical roller		Tolerance symbols	Remarks	Examples of application (Reference)
Bearings with cylindrical bo					е		
Rotating outer ring	When the inner ring is required to move on the shaft easily	For a	For all shaft diameters			When high precision is required, adopt g5 and h5 respectively. For large bearings, f6	Driven wheel
load	When the inner ring is required to move on the shaft easily	For all shaft diameters		h6	is adopted because of easy bearing movement in axial direction.	Tension pully, rope sheave	

Note: (1) Shaft tolerances in this table are applied to solid steel shaft for bearings with tolerance class 0 and 6.

Remarks: Heavy load P > 0.12Cr, Normal Load $0.06Cr < P \le 0.12Cr$, Light Load $P \le 0.06Cr$ Cr: Basic Dynamic Load Rating

(2	/31	

		Sha	ft diameter (r	mm)				
Operat	Operating conditions		Cylindrical roller bearings Tapered roller bearings	Spherical roller bearings	Tolerance symbols	Remarks	Examples of application (Reference)	
		18 under and incl.	_	_	h5	When high precision		
	Light load or	18 Over 100 Incl.	40 under and incl.	_	j6	is required, adopt j5, k5 and m5 instead of	Electrical appliance,	
	fluctuating load	100 Over 200 Incl.	40 Over 140 Incl.	_	k6	j6, k5 and m6	machining tool, pump, blower, haulage car	
		_	140 Over 200 Incl.	_	m6	respectively		
		18 under and incl.	_	_	j5			
Rotating		18 Over 100 Incl.	40 under and incl.	40 under and incl.	k5	The tolerances of k6 and m6 instead of k5 and m5 can be used	Electric motor, turbine, pump, internal combustion engine, wood working machine, bearing application in general.	
inner ring load or	Normal load	100 Over 200 Incl.	40 Over 100 Incl.	40 Over 65 Incl.	m5			
indeterminate direction	or	_	100 Over 140 Incl.	65 Over 100 Incl.	m6	for single row tapered		
load	heavy load	_	140 Over 200 Incl.	100 Over 140 Incl.	n6	roller bearings and single row angular		
		_	200 Over 400 Incl.	140 Over 200 Incl.	p6	contact ball bearings.		
		_	_	280 Over	r6			
	Composite load	_	50 Over 140 Incl.	50 Over 100 Incl.	n6	A bearing with an	Axles of locomotive and	
		_	140 Over 200 Incl.	100 Over 140 Incl.	p6	internal clearance larger than the normal	passenger train, traction	
		_	200 Over	140 Over	r6	clearance is required	motor	

Note: (1) Shaft tolerances in this table are applied to solid steel shaft for bearings with tolerance class 0 and 6.

Remarks: Heavy load P > 0.12Cr, Normal Load $0.06Cr < P \le 0.12Cr$, Light Load $P \le 0.06Cr$ Cr: Basic Dynamic Load Rating

(3/3)

	Sha	ıft diameter (ı	mm)			_	
Operating conditions	Bell bearings	Cylindrical roller bearings Tapered roller bearings	Spherical roller bearings	Tolerance symbols	Remarks	Examples of application (Reference)	
Centric axial load	25	50 under and in	ncl.	j6			
		250 Over		js6, j6	_	_	
	Bearing	with tapered	l bore (with sl	eeve)			
For all load condition	Bearing with tapered bore (with sle			h9/IT5	h10/IT7 instead of h9/IT5 can be used for power transmission shaft. IT5 and IT7 mean the form error (out of roundness, taper) should be limited within the tolerance ranges of IT5 and IT7	Railroad car axle, bearing application in general	

Note: (1) Shaft tolerances in this table are applied to solid steel shaft for bearings with tolerance class 0 and 6.

 $Remarks: \ Heavy \ load \quad P > 0.12Cr \quad , \quad Normal \ Load \quad 0.06Cr < P \leq 0.12Cr \quad , \quad Light \ Load \quad P \leq 0.06Cr \quad Cr: \ Basic \ Dynamic \ Load \ Rating \quad P = 0.06Cr \quad Cr: \ Rating \quad P = 0.06Cr \quad Cr$

Table 8.5 Shaft Tolerances for Thrust Bearings

Operating	conditions	Shaft diameter (mm)	Tolerance symbols
Centric a	xial load	250 under and incl.	j6
(Thrust ball bearings and spl	nerical roller thrust bearings)	250 Over	js6, j6
	Deteting outer sing load	250 under and incl.	j6
	Rotating outer ring load	250 Over	js6, j6
Composite load (Spherical roller thrust bearings)		200 under and incl.	k6
(ophenical roller tillust bearings)	Rotation inner ring load or indeterminate direction load	200 Over 400 Incl.	m6
	indeterminate direction load	400 Over	n6

Table 8.7 Housing Bore Tolerances for Thrust Bearings

Operating	g conditions	Tolerance symbols	Remarks
Centric axial load	Thrust ball bearing	Н8	When high accuracy is not required, radial clearance will be provided between outer ring (housing washer)/aligning housing washer and housing
(All thrust bearings)	Spherical roller thrust bearing; When housing is located in radial direction by another bearing.	-	0.001D is recommended as a radial clearance between outer ring and housing. D: outside diameter of housing washer
Composite load	Stationary outer ring load or indeterminate direction load	H7 J7	_
(Spherical roller thrust bearings)	Rotating outer ring load	K7 M7	In case when the radial load is comparatively large, bearing application in general

Table 8.6 Housing Bore Tolerances (1) for Radial Bearings (Except Inch-series Tapered Roller Bearings)

	Оре	rating conditions	Tolerance symbols	Outer ring movement (2)	Examples of application (Reference)
		When a heavy load is applied to a thin-walled housing or impact load	P7		Automotive wheel (roller bearing)
	Rotating outer ring load	Normal load or heavy load	N7	Outer ring can not be moved in axial	Automotive wheel (ball bearing)
Monoblock housing		Light load or fluctuating load	- M7	direction.	Conveyer roller, pulley, tension pulley
		Heavy impact load	IVI7		Traction motor
	Indeterminate direction load	Heavy load or normal load; When the outer ring is not required to move in axial direction	K7	Outer ring can not be moved in axial direction as a rule.	Electric motor, pump, crank shaft
		Normal load or light load; When it is desirable that the outer ring can be moved in axial direction	- J7	Outer ring can be moved in axial	Electric motor, pump, crank shaft
		Impact load; When no-load condition occurs instantaneously	37	direction.	Railroad car axle
Monoblock or split housing	Rotating inner	All kinds of load	H7		Railroad car axle, bearing application in general
	ring load	Normal load or light load	H8	Outer ring can be moved easily in axial direction.	Gear transmission
		When thermal conduction through the shaft is caused	G 7		Paper mill (Drying cylinder)

Note: (1) The tolerances in this table are applied to cast iron or steel housing for bearings with tolerance class 0 and 6. Tighter fit is adopted for light alloy housing.

(2) Outer ring of non-separable bearing

(2/2)

Table 8.6 Housing Bore Tolerances (1) for Radial Bearings (Except Inch-series Tapered Roller Bearings)

	Ope	rating conditions	Tolerance symbols	Outer ring movement (2)	Examples of application (Reference)
		Fluctuating load; When extremely	N6	Outer ring can not be moved in axial	Main shaft of machine tool (roller bearing, outside diameter is over 125 mm)
Monoblock	When extremely	accurate rotation and high rigidity are required	M6	direction.	Main shaft of machine tool (roller bearing outside diameter is under and including 125 mm)
housing	high accuracy is required	Indeterminate direction light load; When extremely accurate rotation is required.	K6	Outer ring can not be moved in axial direction as a rule.	Main shaft of grinding machine, ball bearing on grinding wheel side High speed centrifugal compressor, clamping side bearing
		When extremely accurate rotation is required and it is desirable that the outer ring can be moved in axial direction.	J6	Outer ring can be moved in axial direction.	Main shaft of grinding machine, ball bearing on driving side High speed centrifugal compressor, floating side bearing

Note: (1) The tolerances in this table are applied to cast iron or steel housing for bearings with tolerance class 0 and 6. Tighter fit is adopted for light alloy housing.

(2) Outer ring of non-separable bearing

Table 4.2.1 Boundary Dimensions of Diameter Series 9, 0

(2/8)

Single row, radial ball	bear:	ings	69 79									160	60 70							
Double row, radial ball	bear	ings											-							
Cylindrical roller bear	ngs					NN49							N10		NN30					
Spherical roller bearing	ys				239										230	240				
	Φ			Di	amete	er so	erie	s 9			Ð			Diar	meter	ser	ries	0		
	sid			Widt	th se	ries			Chamfe	er	sid			Wid	lth se	erie	s		Char	mfer
Bearing bore diameter	outs	0	1	2	3	4	5	6	dimens	sion	ut D	0	1	2	3	4	5	6	1	ension
Nominal	Ы				Dimer	nsio	n se	∍ri∈	es		L O			D	imens	sion	ser	ries		
			_						19	49	aring	_								10
	ar	09	19	29	39	49	59	69		~ 69	ar am	00	10	20	30	40	50	60	0 ф	
Bore No. d	Be								39	69	Be									60
_		4				_		J											l ~	nin
				Wı	dth E	3			I min	1				W	idth	В			In	ıın
00 10	22		6	8	10	13	16	22	n 0.3	0.3			8	10	12	16	21	29	ñ	0.3
01 12	24	ñ	6	8	10 10	13 13	16	22	ñ 0.3 ñ 0.3	0.3	28	7	8	10 10	12 12	16 16	21	29	ñ 0.3	0.3
		ñ ñ		8	10	13		22 23	ñ 0.3 ñ 0.3 ñ 0.3	0.3	28 32			10	12	16		29 30	ñ 0.3 0.3	0.3 0.3 0.3
01 12 02 15 03 17	24 28 30	ñ ñ ñ	6 7 7	8 8 8.	10 10 510	13 13 13	16 18 18	22 23 23	Ñ 0.3Ñ 0.3Ñ 0.3	0.3 0.3 0.3	28 32 35	7 8 8	8 9 10	10 10 11	12 12 13	16 16 17	21 23 24	29 30 32	ñ 0.3 0.3	0.3 0.3 0.3
01 12 02 15 03 17 04 20	24 28	ñ ñ	6 7	8 8 8.	10 10 510	13 13 13	16 18 18 23	22 23 23 30	ñ 0.3 ñ 0.3 ñ 0.3	0.3 0.3 0.3	28 32 35 42	7 8	8 9	10 10 11	12 12 13	16 16 17	21 23	29 30 32 40	ñ 0.3 0.3	0.3 0.3 0.3
01 12 02 15 03 17 04 20 /22 22	24 28 30 37 39	ñ ñ ñ	6 7 7 9 9	8 8 8. 11 11	10 10 510 510 13 13	13 13 13 13 17 17	16 18 18 23 23	22 23 23 30 30	<pre></pre>	0.3 0.3 0.3 0.3 0.3	28 32 35 42 44	7 8 8 8 8	8 9 10 12 12	10 10 11 12 14 14	12 12 13 14 16 16	16 16 17 18 22 22	21 23 24 30 30	29 30 32 40 40	ñ 0.3 0.3 0.3 0.3	0.3 0.3 0.3 0.3 0.6 0.6
01 12 02 15 03 17 04 20 /22 22 05 25	24 28 30 37 39	ñ ñ ñ 7 7	6 7 7 9 9	8 8 8. 11 11	10 10 510 510 13 13	13 13 13 13 17 17	16 18 18 23 23	22 23 23 30 30 30	ñ 0.3 ñ 0.3 ñ 0.3 0.30.3 0.30.3	0.3 0.3 0.3 0.3 0.3	28 32 35 42 44	7 8 8 8 8	8 9 10 12 12	10 10 11 12 14 14	12 12 13 14 16 16	16 16 17 18 22 22	21 23 24 30 30	29 30 32 40 40	ñ 0.3 0.3 0.3 0.3	0.3 0.3 0.3 0.3 0.6 0.6
01 12 02 15 03 17 04 20 /22 22	24 28 30 37 39	ñ ñ ñ	6 7 7 9 9	8 8 8. 11 11	10 10 510 510 13 13	13 13 13 13 17 17	16 18 18 23 23 23	22 23 23 30 30 30	<pre></pre>	0.3 0.3 0.3 0.3 0.3 0.3	28 32 35 42 44 47 52	7 8 8 8 8	8 9 10 12 12	10 10 11 12 14 14	12 12 13 14 16 16 16	16 16 17 18 22 22	21 23 24 30 30	29 30 32 40 40 40 43	ñ 0.3 0.3 0.3 0.3	0.3 0.3 0.3 0.6 0.6
01 12 02 15 03 17 04 20 /22 22 05 25 /28 28 06 30	24 28 30 37 39 42 45 47	ñ ñ 7 7 7	6 7 7 9 9 9	8 8 8. 11 11 11 11 11	10 10 510 510 13 13 13 13	13 13 13 17 17 17 17 17	16 18 23 23 23 23 23	22 23 23 30 30 30 30 30	ñ 0.3 ñ 0.3 ñ 0.3 0.30.3 0.30.3 0.30.3 0.30.3 0.30.3	0.3 0.3 0.3 0.3 0.3 0.3 0.3	28 32 35 42 44 47 52 55	7 8 8 8 8 8 8	8 9 10 12 12 12 12 13	10 10 11 12 14 14 14 15 16	12 12 13 14 16 16 16 18 19	16 16 17 18 22 22 22 24 25	21 23 24 30 30 30 32 34	29 30 32 40 40 40 43 45	ñ 0.3 0.3 0.3 0.3 0.3 0.3	0.3 0.3 0.3 0.6 0.6 0.6
01 12 02 15 03 17 04 20 /22 22 05 25 /28 28	24 28 30 37 39 42 45	ñ ñ 7 7 7	6 7 7 9 9	8 8 8. 11 11 11	10 10 510 510 13 13 13	13 13 13 13 17 17 17	16 18 18 23 23 23 23 23 27	22 23 30 30 30 30 30 30	ñ 0.3 ñ 0.3 ñ 0.3 0.30.3 0.30.3 0.30.3 0.30.3 0.30.3	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	28 32 35 42 44 47 52 55	7 8 8 8 8	8 9 10 12 12 12	10 10 11 12 14 14 14 15	12 12 13 14 16 16 16 18 19	16 16 17 18 22 22 22	21 23 24 30 30 30 32	29 30 32 40 40 43 45	ñ 0.3 0.3 0.3 0.3 0.3	0.3 0.3 0.3 0.6 0.6 0.6

Remarks: 1.1min is the smallest chamfer dimension.

- 2. The chamfer dimensions given in this table do not necessarily apply to:
 - (1) the groove side of bearing rings with snap rin(3) grbev€ront face side of angular contact bear
 - (2) the flangeless side of thin cylindrical rollex(4) bearings of bearings with tapered bore

Unit : mm

Table 4.2.1 Boundary Dimensions of Diameter Series 9, 0

(3/0/

19 95 130 11 18 22 26 35 46 63 0.61.1 1.1 145 16 24 30 37 50 67 90 1 1.5																							
Spherical roller bearings Bearing bore diameter Nominal Bore No. d Bore No.	Single row, radial ball	beari	ngs	69 79										160	60 70								ı
Spherical roller bearings 239 Diameter series 9 Diameter series 0 Diameter ser	Double row, radial ball	beari	ngs																				
Bearing bore diameter Nominal Diameter series Diameter ser	Cylindrical roller bear:	ngs					NN49								N10		NN30						
Bearing bore diameter Nominal Bore No. d Width series Width series Dimension ser	Spherical roller bearing	Js				239											230	240					
Bearing bore diameter Nominal Bore No. d Width series Width series Chamfer dimension Chamfer Ch		Ø.			Di	amete	er se	erie	s 9							Diar	neter	ser	ies	0			
Bore No. d Dimension series		.∺			Widt	ch se	ries			Ch	namf	er	-H			Wid	th se	erie	s		Chai	mfer	
Dimension series Dimension series Dimension series Dimension series		T	0	1	2	3	4	5	6	di	Lmen	sion		0	1	2	3	4	5	6	dime	ensi	эn
Bore No. d Width B Emin Width B Width B Emin Width B Width B Emin Width		Н				Dime	nsio	n se	erie	es			r o			D	imens	sion	ser	ries			_
Bore No. d Width B Imin Imin		arin amet	09	19	29	39	49	59	69	0 9) {		arin amet	00	10	20	30	40	50	60	00) ,	
Width B Imin 09 45 68 8 12 14 16 22 30 40 0.30.6 0.6 75 10 16 19 23 30 40 54 0.61 11 55 80 9 13 16 19 25 34 45 0.31 1 90 11 18 22 26 35 46 63 0.61.1 1 13 65 90 9 13 16 19 25 34 45 0.31 1 95 11 18 22 26 35 46 63 0.61.1 1 11 13 65 90 9 13 16 19 25 34 45 0.31 1 95 11 18 22 26 35 46 63 0.61.1	Bore No. d	Be									39	69	Be									60	
10 50 72 8 12 14 16 22 30 40 0.30.6 0.6 80 10 16 19 23 30 40 54 0.61.1 12 60 85 9 13 16 19 25 34 45 0.31 1 95 11 18 22 26 35 46 63 0.61.1 13 65 90 9 13 16 19 25 34 45 0.31 1 100 11 18 22 26 35 46 63 0.61.1 14 70 100 10 16 19 23 30 40 54 0.61 1 110 13 20 24 30 40 54 71 0.61.1 15 75 105 10 16 19 23 30 40 54 0.61 1 115 13 20 24 30 40 54 71 0.61.1 16 80 110 10 16 19 23 30 40 54 0.61 1 125 14 22 27 34 45 60 80 0.61.1 17 85 120 11 18 22 26 35 46 63 0.61.1 1.1 130 14 22 27 34 45 60 80 0.61.1 18 90 125 11 18 22 26 35 46 63 0.61.1 1.1 140 16 24 30 37 50 67 90 1 1.5 19 95 130 11 18 22 26 35 46 63 0.61.1 1.1 145 16 24 30 37 50 67 90 1 1.5					Wi	dth E	3				l mir	ı				W.	idth	В			1 6	hin	
13 65 90 9 13 16 19 25 34 45 0.31 1 100 11 18 22 26 35 46 63 0.61.1 14 70 100 10 16 19 23 30 40 54 0.61 1 110 13 20 24 30 40 54 71 0.61.1 16 80 110 10 16 19 23 30 40 54 0.61 1 125 14 22 27 34 45 60 80 0.61.1 17 85 120 11 18 22 26 35 46 63 0.61.1 1.1 140 16 24 30 37 50 67 90 1 1.5 18 90 125 11 18 22 26 35 46 63 0.61.1 1.1 140 16 24 30 37 50 67 90 1 <td< td=""><td>10 50</td><td>72</td><td>8</td><td>12</td><td>14</td><td>16</td><td>22</td><td>30</td><td>40</td><td>0.3</td><td>0.6</td><td>0.6</td><td>80</td><td>10</td><td>16</td><td>19</td><td>23</td><td>30</td><td>40</td><td>54</td><td>0.6</td><td>1</td><td></td></td<>	10 50	72	8	12	14	16	22	30	40	0.3	0.6	0.6	80	10	16	19	23	30	40	54	0.6	1	
16 80 110 10 16 19 23 30 40 54 0.61 1 125 14 22 27 34 45 60 80 0.61.1 17 85 120 11 18 22 26 35 46 63 0.61.1 1.1 130 14 22 27 34 45 60 80 0.61.1 18 90 125 11 18 22 26 35 46 63 0.61.1 1.1 140 16 24 30 37 50 67 90 1 1.5 19 95 130 11 18 22 26 35 46 63 0.61.1 1.1 145 16 24 30 37 50 67 90 1 1.5 19 95 130 11 18 22 26 35 46 63 0.61.1 1.1 145 16 24 30 37 50 67 90	13 65	90	9	13	16	19	25	34	45	0.3	3 1	1	100	11	18	22	26	35	46	63	0.6	1.1	
19 95 130 11 18 22 26 35 46 63 0.61.1 1.1 145 16 24 30 37 50 67 90 1 1.5	16 80	110	10	16	19	23	30	40	54	0.6	51	1	125	14	22	27	34	45	60	80	0.6	1.1	
	19 95	130	11	18	22	26	35	46	63	0.6	51.1	1.1	145	16	24	30	37	50	67	90	1	1.5 1.5 1.5	

Remarks:1.1min is the smallest chamfer dimension.

2. The chamfer dimensions given in this table do not necessarily apply to:

(1) the groove side of bearing rings with snap rin(3)grbev€ront face side of angular contact bear

(2) the flangeless side of thin cylindrical rollex(4) bearings of bearings with tapered bore

Unit : mm

Table 8.9 Fits of Inch Series Tapered Roller Bearings with Housings

Table 8.9.1 For Bearings with ABMA Classes 4 and 2

Unit: μ m

O	perating conditions	Bearing outs Nominal	ide diameter D (mm)	_	outside deviation	Housin diameter	_	Amour	nts ⁽¹⁾
		Over	Incl.	High	Low	High	Low	Max	Min
	Floating side or Clamping side	76.2 127.0 304.8 609.6	76.2 127.0 304.8 609.6 914.4	+25 +25 +25 +51 +76	0 0 0 0	+ 76 + 76 + 76 +152 +229	+ 50 + 50 + 50 +102 +152	25L 25L 25L 51L 76L	76L 76L 76L 152L 229L
Rotating inner ring load	Outer ring location in axial direction can be adjusted	76.2 127.0 304.8 609.6	76.2 127.0 304.8 609.6 914.4	+25 +25 +25 +51 +76	0 0 0 0	+ 25 + 25 + 51 + 76 +127	0 0 0 + 26 + 51	25T 25T 25T 25T 25T	25L 25L 51L 76L 127L
-	Outer ring location in axial direction can not be adjusted	76.2 127.0 304.8 609.6	76.2 127.0 304.8 609.6 914.4	+25 +25 +25 +51 +76	0 0 0 0	1325252525	- 39 - 51 - 51 - 76 -102	64T 76T 76T 127T 178T	13T 25T 25T 25T 25T 25T
Rotating outer ring load	Outer ring location in axial direction can not be adjusted	76.2 127.0 304.8 609.6	76.2 127.0 304.8 609.6 914.4	+25 +25 +25 +51 +76	0 0 0 0	- 13 - 25 - 25 - 25 - 25	- 39 - 51 - 51 - 76 -102	64T 76T 76T 127T 178T	13T 25T 25T 25T 25T 25T

Note: (1) T: Tight fit L: Loose fit

O	perating conditions	Bearing outs Nominal	ide diameter D (mm)		outside deviation	Housing diameter o		Amour	nts ⁽¹⁾
	- -	Over	Incl.	High	Low	High	Low	Max	Min
	Floating side	152.4 304.8 609.6	152.4 304.8 609.6 914.4	+13 +13 +25 +38	0 0 0	+38 +38 +64 +89	+26 +26 +38 +51	13L 13L 13L 13L	38L 38L 64L 89L
Rotating inner ring load	Clamping side	152.4 304.8 609.6	152.4 304.8 609.6 914.4	+13 +13 +25 +38	0 0 0	+25 +25 +51 +76	+13 +13 +25 +38	0 0 0	25L 25L 51L 76L
	Outer ring location in axial direction can be adjusted	152.4 304.8 609.6	152.4 304.8 609.6 914.4	+13 +13 +25 +38	0 0 0	+13 +25 +25 +38	0 0 0 0	13T 13T 25T 38T	13L 25L 25L 38L
	Outer ring location in axial direction can not be adjusted	152.4 304.8 609.6	152.4 304.8 609.6 914.4	+13 +13 +25 +38	0 0 0	0 0 0 0	-12 -25 -26 -38	25T 38T 51T 76T	0 0 0 0
Rotating outer ring load	Normal load Outer ring location in axial direction can not be adjusted	152.4 304.8 609.6	152.4 304.8 609.6 914.4	+13 +13 +25 +38	0 0 0	-13 -13 -13 -13	-25 -38 -39 -51	38T 51T 64T 89T	13T 13T 13T 13T

Note: (1) T: Tight fit L: Loose fit

⁽²⁾ This tables is not applied to the bearing with tolerance class 0 whose bore diameter is over 304.8 mm.

Table 8.10 Amounts of Fits: Radial Bearings with Tolerance JIS Class 0 (ISO Normal Class)

Table 8.10.1 Inner Ring with Shaft

(1/2)

Nom	ninal	mean	plane bore			S	Shaft w	ith toler	ance gr	ade IT	5		
diam	neter		neter ation	m	15	k	5	j	5	h	15	Ç	j 5
(m	m)	of be $\triangle d$	aring mp	Tig	ght	Tiç	ght	Tight	Loose	Tight	Loose	Tight	Loose
Over	Incl.	High	Low	Max	Min	Max	Min	Max	Max	Max	Max	Max	Max
3 6 10	6 10 18	0 0 0	- 8 - 8 - 8	_ _ _	_ _ _	- - 17	_ _ 1	11 12 13	2 2 3	8 8 8	5 6 8	4 3 2	9 11 14
18 30 50 80	30 50 80 120	0 0 0 0	-10 -12 -15 -20	- 32 39 48	- 9 11 13	21 25 30 38	2 2 2 3	15 18 21 26	4 5 7 9	10 12 15 20	9 11 13 15	3 3 5 8	16 20 23 27
120 140 160	140 160 180	0	-25	58	15	46	3	_	_	25	18	11	32
180 200 225	200 225 250	0	-30	67	17	54	4	_	_	30	20	15	35
250 280	280 315	0	-35	_	_	_	_	_	_	35	23	18	40
315 355	355 400	0	-40	_	_	_	_	_	_	40	25	22	43
400 450	450 500	0	– 45	_	_	_	_	_	_	45	27	25	47

Table 8.10.1 Inner Ring with Shaft

(2/2)

Nom	ninal						,	Shaft wi	th toler	ance gra	ade IT6						
diam		r	6	p	6	n	6	m	16	k	6	j	6	ŀ	16	Ç	<u> </u>
(m	m)	Ti	ght	Tig	jht	Tiç	ght	Tiç	ght	Tiç	ght	Tight	Loose	Tight	Loose	Tight	Loose
Over	Incl.	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Max	Max	Max	Max	Max
3 6 10	6 10 18	- - -	_ _ _	- - -	_ _ _	- - -	_ _ _	- - -	_ _ _	- - 20	- - 1	14 15 16	2 2 3	8 8 8	8 9 11	4 3 2	12 14 17
18 30 50 80	30 50 80 120	- - - -	_ _ _ _	- - - 76	- - - 37	– 45 54 65	- 17 20 23	- 37 45 55	- 9 11 13	25 30 36 45	2 2 2 3	19 23 27 33	4 5 7 9	10 12 15 20	13 16 19 22	3 3 5 8	20 25 29 34
120 140 160	140 160 180	113 115 118	63 65 68	93	43	77	27	65	15	53	3	39	11	25	25	11	39
180 200 225	200 225 250	136 139 143	77 80 84	109	50	90	31	76	17	63	4	46	13	30	29	15	44
250 280	280 315	161 165	94 98	123	56	_	_	_	_	_	_	51	16	35	32	18	49
315 355	355 400	184 190	108 114	138	62	_	_	_	_	_	_	58	18	40	36	22	54
400 450	450 500	211 217	126 132	_	_	_	_	_	_	_	_	65	20	45	40	26	60

Table 8.10 Amounts of Fits: Radial Bearings with Tolerance JIS Class 0 (ISO Normal Class)

Table 8.10.2 Outer Ring with Housing

(1/2)

		9							
Nor	ninal	Single pla			Housin	g with tol	erance gra	ıde IT6	
diar	neter	devia		K	(6	·	J6	F	 16
(m	nm)	of be $\triangle D$		Tight	Loose	Tight	Loose	Tight	Loose
Over	Incl.	High Low		Max	Max	Max	Max	Max	Max
6 10 18	10 18 30	0 0 0	- 8 - 8 - 8	7 9 11	10 10 11	4 5 5	13 14 17	0 0 0	17 19 22
30 50 80	50 80 120	0 0 0	-11 -13 -15	13 15 18	14 17 19	6 6 6	21 26 31	0 0 0	27 32 37
120 150 180	150 180 250	0 0 0	-18 -25 -30	21 21 24	22 29 35	7 7 7	36 43 52	0 0 0	43 50 59
250 315 400	315 400 500	0 0 0	-35 -40 -45	27 29 32	40 47 53	7 7 7	60 69 78	0 0 0	67 76 85

Table 8.10.2 Outer Ring with Housing

(2/2)

Non	ninal						Housir	g with to	olerance g	grade IT	7				
dian	neter	Р	7		17	N	17	k	(7		J7	ŀ	1 7	(G7
(m	nm)	Tig	ght	Tight	Loose	Tight	Loose	Tight	Loose	Tight	Loose	Tight	Loose	Lc	ose
Over	Incl.	Max	Min	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	Min	Max
6	10	24	1	19	4	15	8	10	13	7	16	0	23	5	28
10	18	29	3	23	3	18	8	12	14	8	18	0	26	6	32
18	30	35	5	28	2	21	9	15	15	9	21	0	30	7	37
30	50	42	6	33	3	25	11	18	18	11	25	0	36	9	45
50	80	51	8	39	4	30	13	21	22	12	31	0	43	10	53
80	120	59	9	45	5	35	15	25	25	13	37	0	50	12	62
120	150	68	10	52	6	40	18	28	30	14	44	0	58	14	72
150	180	68	3	60	13	40	25	28	37	14	51	0	65	14	79
180	250	79	3	60	16	46	30	33	43	16	60	0	76	15	91
250	315	88	1	66	21	52	35	36	51	16	71	0	87	17	104
315	400	98	1	73	24	57	40	40	57	18	79	0	97	18	115
400	500	108	0	80	28	63	45	45	63	20	88	0	108	20	128

Table 8.11 Amounts of Fits: Radial Bearings with Tolerance JIS (ISO) Class 6

Table 8.11.1 Inner Ring with Shaft

(1/2)

				3										
	Non	ninal	Single mean	plane bore			S	Shaft w	ith toler	ance gr	ade IT	5		
	diam	neter	diam devi	ation	m	15	k	5	j	5	ŀ	15		3 5
	(m	m)	of be $ extstyle extstyle d$		Tig	ght	Tiç	ght	Tight	Loose	Tight	Loose	Tight	Loose
(Over	Incl.	High	Low	Max	Min	Max	Min	Max	Max	Max	Max	Max	Max
	3 6 10	6 10 18	0 0 0	- 7 - 7 - 7	_ _ _	_ _ _	- - 16	_ _ 1	10 11 12	2 2 3	7 7 7	5 6 8	3 2 1	9 11 14
	18 30 50 80	30 50 80 120	0 0 0	- 8 -10 -12 -15	- 30 36 43	- 9 11 13	19 23 27 33	2 2 2 3	13 16 18 21	4 5 7 9	8 10 12 15	9 11 13 15	1 1 2 3	16 20 23 27
	120 140 160	140 160 180	0	-18	51	15	39	3	_	_	18	18	4	32
	180 200 225	200 225 250	0	-22	59	17	46	4	_	_	22	20	7	35

Table 8.11.1 Inner Ring with Shaft

(2/2)

Nom	ninal						,	Shaft wi	th toler	ance gra	ade IT6						
diam	neter	r	6	р	6	n	6	m	16	k	6	j	6	r	16	Ç	g6
(m	m)	Tig	ght	Tig	ıht	Tiç	ght	Tiç	ght	Tig	ght	Tight	Loose	Tight	Loose	Tight	Loose
Over	Incl.	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Max	Max	Max	Max	Max
3 6 10	6 10 18	_ _ _	_ _ _	- - -	_ _ _	- - -	_ _ _	- - -	_ _ _	- - 19	- - 1	13 14 15	2 2 3	7 7 7	8 9 11	3 2 1	12 14 17
18 30 50 80	30 50 80 120	- - - -	= = =	- - - 74	- - - 37	- 43 51 60	- 17 20 23	- 35 42 50	- 9 11 13	23 28 33 40	2 2 2 3	17 21 24 28	4 5 7 9	8 10 12 15	13 16 19 22	1 1 2 3	20 25 29 34
120 140 160	140 160 180	106 108 111	63 65 68	86	43	70	27	58	15	46	3	32	11	18	25	4	39
180 200 225	200 225 250	128 131 135	77 80 84	101	50	82	31	68	17	55	4	38	13	22	29	7	44

Table 8.11 Amounts of Fits: Radial Bearings with Tolerance JIS (ISO) Class 6

Table 8.11.2 Outer Ring with Housing

(1/2)

dian	ninal neter nm)	Single pla outside d devia of bea ⊿De	iameter tion aring	k Tight	Housin 6 Loose		erance gra		l6 Loose
Over	Incl.	High	Low	Max	Max	Max	Max	Max	Max
6	10	0	- 7	7	9	4	12	0	16
10	18	0	- 7	9	9	5	13	0	18
18	30	0	- 8	11	10	5	16	0	21
30	50	0	- 9	13	12	6	19	0	25
50	80	0	-11	15	15	6	24	0	30
80	120	0	-13	18	17	6	29	0	35
120	150	0	–15	21	19	7	33	0	40
150	180	0	–18	21	22	7	36	0	43
180	250	0	–20	24	25	7	42	0	49
250 315	315 400	0	-25 -28	27 29	30 35	7 7	50 57	0	

Unit: μ m

Table 8.11.2 Outer Ring with Housing

(2/2)

Nor	ninal						Housin	g with to	olerance (grade IT	7				
dian	neter	Р	7	١	١7	N	/ 17	ŀ	< 7	,	J7	F	17	(G7
(m	nm)	Tiç	ght	Tight	Loose	Tight	Loose	Tight	Loose	Tight	Loose	Tight	Loose	Lo	oose
Over	Incl.	Max	Min	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	Min	Max
6 10 18	10 18 30	24 29 35	2 4 6	19 23 28	3 2 1	15 18 21	7 7 8	10 12 15	12 13 14	7 8 9	15 17 20	0 0 0	22 25 29	5 6 7	27 31 36
30 50 80	50 80 120	42 51 59	8 10 11	33 39 45	1 2 3	25 30 35	9 11 13	18 21 25	16 20 23	11 12 13	23 29 35	0 0 0	34 41 48	9 10 12	43 51 60
120 150 180	150 180 250	68 68 79	13 10 13	52 60 60	3 6 6	40 40 46	15 18 20	28 28 33	27 30 33	14 14 16	41 44 50	0 0 0	55 58 66	14 14 15	69 72 81
250 315	315 400	88 98	11 13	66 73	11 12	52 57	25 28	36 40	41 45	16 18	61 67	0	77 85	17 18	94 103

Table 8.12 Amounts of Fits: Radial Bearings with Tolerance JIS (ISO) Class 5 Table 8.12.1 Inner Ring with Shaft

Nom	ninal	Single mean	•			Shaft	with tol	erance gr	ade IT4			Shaft v	vith toler	ance gra	ade IT5
diam	neter	diam devia		m	14	k	4	j:	s4	ŀ	14	m	15	ŀ	15
(m	m)	of be $\triangle d$	•	Tiç	ght	Tiç	ght	Tight	Loose	Tight	Loose	Tiç	ght	Tight	Loose
Over	Incl.	High	Low	Max	Min	Max	Min	Max	Max	Max	Max	Max	Min	Max	Max
3 6 10	6 10 18	0 0 0	- 5 - 5 - 5	13 15 17	4 6 7	10 10 11	1 1 1	7 7 7.5	2 2 2.5	5 5 5	4 4 5	14 17 20	4 6 7	5 5 5	5 6 8
18 30 50	30 50 80	0 0 0	- 6 - 8 - 9	20 24 28	8 9 11	14 17 19	2 2 2	9 11.5 13	3 3.5 4	6 8 9	6 7 8	23 28 33	8 9 11	6 8 9	9 11 13
80 120 180	120 180 250	0 0 0	-10 -13 -15	33 40 46	13 15 17	23 28 33	3 3 4	15 19 22	5 6 7	10 13 15	10 12 14	38 46 52	13 15 17	10 13 15	15 18 20

Table 8.12 Amounts of Fits: Radial Bearings with Tolerance JIS (ISO) Class 5

Table 8.12.2 Outer Ring with Housing

No	minal	Single pla				Hous	ing with tole	rance grad	e IT5		
dia	meter	devia		M	5	K	5	Js	5	H	5
1)	mm)	of bea ⊿D		Tight	Loose	Tight	Loose	Tight	Loose	Tight	Loose
Over	Incl.	High	Low	Max	Max	Max	Max	Max	Max	Max	Max
6 10 18	10 18 30	0 0 0	- 5 - 5 - 6	10 12 14	1 1 1	5 6 8	6 7 7	3 4 4.5	8 9 10.5	0 0 0	11 13 15
30 50 80	50 80 120	0 0 0	- 7 - 9 -10	16 19 23	2 3 2	9 10 13	9 12 12	5.5 6.5 7.5	12.5 15.5 17.5	0 0 0	18 22 25
120 150 180	150 180 250	0 0 0	-11 -13 -15	27 27 31	2 4 4	15 15 18	14 16 17	9 9 10	20 22 25	0 0 0	29 31 35
250 315	315 400	0	-18 -20	36 39	5 6	20 22	21 23	11.5 12.5	29.5 32.5	0	41 45

Table 8.13 Amounts of Fits: Radial Bearings with Tolerance JIS (ISO) Class 4

Table 8.13.1 Inner Ring with Shaft

Nom	ninal	Single mean	bore			Shaft	with tol	erance gi	ade IT4			Shaft v	vith toler	ance gra	ide IT5
diam	neter	diam devia		m	14	k	4	j	s4	r	n4	m	5	ŀ	15
(m	m)	of be $\triangle d$	•	Tiç	ght	Tig	ght	Tight	Loose	Tight	Loose	Tig	ght	Tight	Loose
Over	Incl.	High	Low	Max	Min	Max	Min	Max	Max	Max	Max	Max	Min	Max	Max
3 6 10	6 10 18	0 0 0	- 4 - 4 - 4	12 14 16	4 6 7	9 9 10	1 1 1	6 6 6.5	2 2 2.5	4 4 4	4 4 5	13 16 19	4 6 7	4 4 4	5 6 8
18 30 50	30 50 80	0 0 0	- 5 - 6 - 7	19 22 26	8 9 11	13 15 17	2 2 2	8 9.5 11	3 3.5 4	5 6 7	6 7 8	22 26 31	8 9 11	5 6 7	9 11 13
80 120 180	120 180 250	0 0 0	- 8 10 -12	31 37 43	13 15 17	21 25 30	3 3 4	13 16 19	5 6 7	8 10 12	10 12 14	36 43 49	13 15 17	8 10 12	15 18 20

Table 8.13 Amounts of Fits: Radial Bearings with Tolerance JIS (ISO) Class 4

Table 8.13.2 Outer Ring with Housing

Nor	ninal	Single pla				Hous	sing with tole	rance grad	e IT5		
dian	neter	devia		M	5	K	5	Js	5	H	5
(m	nm)	of bea	•	Tight	Loose	Tight	Loose	Tight	Loose	Tight	Loose
Over	Incl.	High	Low	Max	Max	Max	Max	Max	Max	Max	Max
6 10 18	10 18 30	0 0 0	- 4 - 4 - 5	10 12 14	0 0 0	5 6 8	5 6 6	3 4 4.5	7 8 9.5	0 0 0	10 12 14
30 50 80	50 80 120	0 0 0	- 6 - 7 - 8	16 19 23	1 1 0	9 10 13	8 10 10	5.5 6.5 7.5	11.5 13.5 15.5	0 0 0	17 20 23
120 150 180	150 180 250	0 0 0	- 9 -10 -11	27 27 31	0 1 0	15 15 18	12 13 13	9 9 10	18 19 21	0 0 0	27 28 31
250 315	315 400	0 0	-13 -15	36 39	0 1	20 22	16 18	11.5 12.5	24.5 27.5	0	36 40

Table 8.14 Amounts of Fits: Thrust Bearings with Tolerance JIS (ISO) Class 0 **Table 8.14.1 Shaft Washer or Center Washer with Shaft**

Non	ninal	• •	e mean bore deviation					erance grad			
diam	neter	of be		n	6	m	16	k	. 6	j6	
(m	m)	Δd	•	Tiç	ght	Tiọ	ght	Tiọ	ght	Tight	Loose
Over	Incl.	High	Low	Max	Min	Max	Min	Max	Min	Max	Max
6 10 18	10 18 30	0 0 0	- 8 - 8 -10	_ _ _	_ _ _	- - -	_ _ _	18 20 25	1 1 2	15 16 19	2 3 4
30 50 80	50 80 120	0 0 0	-12 -15 -20	_ _ _	_ _ _	_ _ _	_ _ _	30 36 45	2 2 3	23 27 33	5 7 9
120 180 250	180 250 315	0 0 0	-25 -30 -35	_ _ _	_ _ _	– 76 87	_ 17 20	53 63 –	3 4 –	39 46 51	11 13 16
315 400	400 500	0	-40 -45	_ 125	_ 40	97 -	21 -	_ _		58 65	18 20

Table 8.14 Amounts of Fits: Thrust Bearings with Tolerance JIS (ISO) Class 0

Table 8.14.2 Housing Washer with Housing

Nom	ninal	• •	mean outside		Housing with tole	erance grade IT	7
diam	neter		deviation earing	N	17		H7
(m	m)	ΔL	Omp	Tight	Loose	Tight	Loose
Over	Incl.	High	Low	Max	Max	Max	Max
10 18 30	18 30 50	0 0 0	-11 -13 -16	18 21 25	11 13 16	0 0 0	29 34 41
50 80 120	80 120 180	0 0 0	-19 -22 -25	30 35 40	19 22 25	0 0 0	49 57 65
180 250 315 400	250 315 400 500	0 0 0 0	-30 -35 -40 -45	46 52 57 63	30 35 40 45	0 0 0 0	76 87 97 108